We investigate the “generalized second-price” (GSP) auction, a new mechanism used by search engines to sell online advertising. Although GSP looks similar to the Vickrey-Clarke-Groves (VCG) mechanism, its properties are very different. Unlike the VCG mechanism, GSP generally does not have an equilibrium in dominant strategies, and truth-telling is not an equilibrium of GSP. To analyze the properties of GSP, we describe the generalized English auction that corresponds to GSP and show that it has a unique equilibrium. This is an ex post equilibrium, with the same payoffs to all players as the dominant strategy equilibrium of VCG. (JEL D44, L81, M37)
the ad with the highest bid is displayed at the top, the ad with the next highest bid is displayed in the second position, and so on. If a user subsequently clicks on an ad in position i, that advertiser is charged by the search engine an amount equal to the next highest bid, i.e., the bid of an advertiser in position $(i+1)$. If a search engine offered only one advertisement per result page, this mechanism would be equivalent to the standard second-price auction, coinciding with the Vickrey-Clarke-Groves (VCG) mechanism (William Vickrey 1961; Edward H. Clarke 1971; Theodore Groves 1973), auction. With multiple positions available, GSP generalizes the second-price auction (hence the name). Here, each advertiser pays the next highest advertiser’s bid. But as we will demonstrate, the multi-unit GSP auction is no longer equivalent to the VCG auction and lacks some of VCG’s desirable properties. In particular, unlike the VCG mechanism, GSP generally does not have an equilibrium in dominant strategies, and truth-telling is not an equilibrium of GSP.

In Section I, we describe the evolution of the market for Internet advertisements and the unique features of the environment in this market. In Section II, we introduce a model of sponsored search auctions, and we begin our analysis of the model in Section III. Since advertisers can change their bids frequently, sponsored search auctions can be modeled as a continuous or an infinitely repeated game. By the folk theorem, however, such a game will have an extremely large set of equilibria, and so we focus instead on the one-shot, simultaneous-move, complete information stage game, introducing restrictions on advertisers’ behavior suggested by the market’s dynamic structure. We call the equilibria satisfying these restrictions “locally envy-free.”

We then proceed to show that the set of locally envy-free equilibria contains an equilibrium in which the payoffs of the players are the same as in the dominant-strategy equilibrium of the VCG auction, even though both the bids of the players and the payment rules in the mechanisms are very different. Moreover, this equilibrium is the worst locally envy-free equilibrium for the search engine and the best locally envy-free equilibrium for the advertisers. Consequently, in any locally envy-free equilibrium of GSP, the total expected revenue to the seller is at least as high as in the dominant-strategy equilibrium of the VCG auction.

In Section IV, we present our main result. We introduce the generalized English auction with independent private values, which corresponds to the generalized second-price auction and is meant to capture the convergence of bidding behavior to the static equilibrium, in the same spirit as tâtonnement processes in the theory of general equilibrium and the deferred-acceptance salary adjustment process in the theory of matching in labor markets. The generalized English auction has several notable features. Although it is not dominant-strategy solvable, it has a unique, perfect Bayesian equilibrium in continuous strategies. In this equilibrium, all players receive VCG payoffs. Moreover, this equilibrium is ex post, i.e., even if a particular player learned the values of other players before the game, he would not want to change his strategy. This, in turn, implies that the equilibrium is robust, i.e., it does not depend on the underlying distribution of values: the profile of strategies that we identify is an ex post Bayesian Nash equilibrium for any set of distributions of advertisers’ private values.

There are several recent theoretical and empirical papers related to sponsored search auctions. Gagan Aggarwal and Jason D. Hartline (2005), Aranyak Mehta et al. (2005), and Mohammad Mahdian, Hamid Nazerzadeh, and Amin Saberi (2006) propose computationally fast, near-optimal mechanisms for pricing and allocating slots to advertisers in the presence of budget constraints and random shocks. Christopher Meek, David M. Chickering, and David B. Wilson (2005) describe incentive-compatible auctions with stochastic allocation rules, generalizing Vickrey auctions, and argue that such auctions can be useful for selling Internet advertising despite being inefficient. Note that, in contrast to these papers, we study the mechanisms actually used by the search engines.

Xiaoquan Zhang (2005), Kursad Asdemir (2006), and Edelman and Ostrovsky (forthcoming) present empirical evidence of bid and ranking fluctuations in both generalized first-price and generalized second-price auctions. They argue that history-dependent strategies can give rise to such fluctuations. However, Hal R. Varian (forthcoming) empirically analyzes GSP
auction data from Google and reports that locally envy-free Nash equilibria “describe the basic properties of the prices observed in Google’s ad auction reasonably accurately.”

I. The Structure and Evolution of Sponsored Search Auctions

A. Notable Features of the Market for Internet Advertising

A combination of features makes the market for Internet advertising unique. First, bids can be changed at any time. An advertiser’s bid for a particular keyword will apply every time that keyword is entered by a search engine user, until the advertiser changes or withdraws the bid. For example, the advertiser with the second highest bid on a given keyword at some instant will be shown as the second sponsored link to a user searching for that keyword at that instant. The order of the ads may be different next time a user searches for that keyword, because the bids could have changed in the meantime.

Second, search engines effectively sell flows of perishable advertising services rather than storable objects: if there are no ads for a particular search term during some period of time, the “capacity” is wasted.

Finally, unlike other centralized markets, where it is usually clear how to measure what is being sold, there is no “unit” of Internet advertisement that is natural from the points of view of all involved parties. From the advertiser’s perspective, the relevant unit is the cost of attracting a customer who makes a purchase. This corresponds most directly to a pricing model in which an advertiser pays only when a customer actually completes a transaction. From the search engine’s perspective, the relevant unit is what it collects in revenues every time a user performs a search for a particular keyword. This corresponds to a pricing model in which an advertiser is charged every time its link is shown to a potential customer. “Pay-per-click” is a middle ground between the two models: the advertiser pays every time a user clicks on the link. All three payment models are widely used on the Internet.

Since GSP evolved in the market for online advertising, its rules reflect the environment’s unique characteristics. GSP insists that for each keyword, advertisers submit a single bid—even though several different items are for sale (different advertising positions). GSP’s unusual one-bid requirement makes sense in this setting: the value of being in each position is proportional to the number of clicks associated with that position; the benefit of placing an ad in a higher position is that the ad is clicked more, but the users who click on ads in different positions are assumed to have the same values to advertisers (e.g., the same purchase probabilities). Consequently, even though the GSP environment is multi-object, buyer valuations can be adequately represented by one-dimensional types. For some advertisers, one bid per keyword may not be sufficiently expressive to fully convey preferences. For example, a single bid ignores the possibility that users who click on position 5 are somehow different from those who click on position 2; it does not allow for the possibility that advertisers care about the allocation of other positions, and so on. Nonetheless, these limitations are apparently not large enough to justify added complexity in the bidding language. Nico Brooks (2004) finds only moderate differences in purchase probabilities when ads are shown in different positions. Following search engines’ approaches and Brooks’ empirical findings, we likewise assume the value of a click is the same in all positions.

1 Varian discovered envy-free Nash equilibria independently and called them “Symmetric Nash Equilibria” in his paper.

2 For manual bidding through online advertiser centers, both Google and Yahoo! allow advertisers to make unlimited changes. In contrast, the search engines impose restrictions on the behavior of software bidding agents: e.g., Yahoo! limits the number of times an advertiser can change his bid in a given period of time.

3 A prominent example of “pay-per-transaction,” and even “pay-per-dollar of revenue” (“revenue sharing”), is Amazon.com’s Associates Program, www.amazon.com/gp/browse.html?node=3435371 (accessed June 10, 2006). Under this program, a Web site that sends customers to Amazon.com receives a percentage of customers’ purchases. “Pay-per-impression” advertising, in the form of banner ads, remains popular on major Internet portals, such as yahoo.com, msn.com, and aol.com.
One important possibility that we abstract away from is that advertisers differ along dimensions other than per-click value, i.e., have different probabilities of being clicked when placed in the same position. (These probabilities are known in the industry as “click-through rates,” or CTRs.) Different search engines treat this possibility differently. Yahoo! ignores the differences, ranks the advertisers purely in decreasing order of bids, and charges the next-highest advertiser’s bid. Google multiplies each advertiser’s bid by its “quality score,” which is based on CTR and other factors, to compute its “rank number,” ranks the ads by rank numbers, and then charges each advertiser the smallest amount sufficient to exceed the rank number of the next advertiser. In our analysis, we assume that all advertisers are identical along dimensions other than per-click value, which eliminates this difference between the mechanisms used at Google and Yahoo!. As we discuss at the end of Section III, the analysis would remain largely the same if there were advertiser-specific differences in CTRs and “quality scores,” although the equilibria under Google and Yahoo! mechanisms would not be identical.

B. Evolution of Market Institutions

The history of sponsored search auctions is of interest as a case study of whether, how, and how quickly markets come to address their structural shortcomings. Many important mechanisms have recently been designed essentially from scratch, entirely replacing completely different historical allocation mechanisms: radio spectrum auctions (Paul Milgrom 2000; Ken Binmore and Paul Klemperer 2002), electricity auctions (Robert Wilson 2002), and others. In contrast, reminiscent of the gradual evolution of medical residency match rules (Alvin E. Roth 1984), sponsored search ad auctions have evolved in steps over time. In both medical residency and search advertising, flawed mechanisms were gradually replaced by increasingly superior designs. Notably, the Internet advertising market evolved much faster than the medical matching market. This may be due to the competitive pressures on mechanism designers present in the former but not in the latter, much lower costs of entry and experimentation, advances in the understanding of market mechanisms, and improved technology.

We proceed with a brief chronological review of the development of sponsored search mechanisms.

Early Internet Advertising.—Beginning in 1994, Internet advertisements were largely sold on a per-impression basis. Advertisers paid flat fees to show their ads a fixed number of times (typically, 1,000 showings or “impressions”). Contracts were negotiated on a case-by-case basis, minimum contracts for advertising purchases were large (typically, a few thousand dollars per month), and entry was slow.

Generalized First-Price Auctions.—In 1997, Overture (then GoTo; now part of Yahoo!) introduced a completely new model of selling

5 See www.google.com/adwords/learningcenter/#section1, links to “Ad Ranking” and “Cost Control” (accessed June 10, 2006). Initially, Google’s pricing mechanism was more transparent: quality score was equal to the estimated click-through rate.
6 The analysis would have to change considerably if there were specific advertiser-position effects. The magnitude of these advertiser-position effects is ultimately an empirical question, and we do not have the kind of data that would allow us to answer it; however, judging from the fact that the two major search engines effectively ignore it in their mechanisms (Yahoo! ignores CTRs altogether; Google computes an advertiser’s estimated CTR conditional on the advertiser attaining the first position), we believe it to be small.
7 Another important difference between the search engines’ implementations of GSP is the amount of information available to the advertisers. On Yahoo!, advertisers can directly observe the bids of their competitors (uv.bidtool.overture.com/d/search/tools/bidtool). On Google, they cannot. For any keyword and any bid amount, however, they can get an estimated average position and average cost-per-click they can expect (adwords.google.com/select/KeywordToolExternal, “Cost and ad position estimates”).
Internet advertising. In the original Overture auction design, each advertiser submitted a bid reporting the advertiser’s willingness to pay on a per-click basis, for a particular keyword. The advertisers could now target their ads: instead of paying for a banner ad that would be shown to everyone visiting a Web site, advertisers could specify which keywords were relevant to their products and how much each of those keywords (or, more precisely, a user clicking on their ad after looking for that keyword) was worth to them. Also, advertising was no longer sold per 1,000 impressions; rather, it was sold one click at a time. Every time a consumer clicked on a sponsored link, an advertiser’s account was automatically billed the amount of the advertiser’s most recent bid. The links to advertisers were arranged in descending order of bids, making highest bids the most prominent. The ease of use, the very low entry costs, and the transparency of the mechanism quickly led to the success of Overture’s paid search platform as the advertising provider for major search engines, including Yahoo! and MSN. However, the underlying auction mechanism itself was far from perfect. In particular, Overture and advertisers quickly learned that the mechanism was unstable due to the fact that bids could be changed very frequently.

Example. Suppose there are two slots on a page and three advertisers. An ad in the first slot receives 200 clicks per hour, while the second slot gets 100. Advertisers 1, 2, and 3 have values per click of $10, $4, and $2, respectively. Suppose advertiser 2 bids $2.01, to guarantee that he gets a slot. Then advertiser 1 will not want to bid more than $2.02—he does not need to pay more than that to get the top spot. But then advertiser 2 will want to revise his bid to $2.03 to get the top spot, advertiser 1 will in turn raise his bid to $2.04, and so on. Clearly, there is no pure strategy equilibrium in the one-shot version of the game, and so if advertisers best respond to each other, they will want to revise their bids as often as possible.

Hence, advertisers will make socially inefficient investments into bidding robots, which can also be detrimental for the revenues of search engines. David McAdams and Schwarz (forthcoming) argue that in various settings, the costs that buyers incur while trying to “game” an auction mechanism are fully passed through to the seller. Moreover, if the “speed” of the robots varies across advertisers, revenues can be very low even if advertisers’ values are high. For instance, in the example above, suppose advertiser 1 has a robot that can adjust the bid very quickly, while advertisers 2 and 3 are humans and can change their bids at most once a day. In this case, as long as advertiser 3 does not bid more than his value, the revenues of a search engine are at most $2.02 per click. Indeed, suppose advertiser 3 bids $2.00. If advertiser 2 bids $2.01, he will be in the second position paying $2.01. If he bids any amount greater than that but lower than his value, he will remain in the second position and will pay more per click, because the robot of advertiser 1 will quickly outbid him. The revenue would not change even if the values of advertisers 1 and 2 were much higher.

Generalized Second-Price Auctions.—Under the generalized first-price auction, the advertiser who could react to competitors’ moves fastest had a substantial advantage. The mechanism therefore encouraged inefficient investments in gaming the system, causing volatile prices and allocative inefficiencies. Google addressed these problems when it introduced its own pay-per-click system, AdWords Select, in February 2002. Google also recognized that an advertiser in position will never want to pay more than one bid increment above the bid of the advertiser in position $(i + 1)$, and adopted this principle in its newly designed generalized second-price auction mechanism. In the simplest GSP auction, an advertiser in position p a price per click equal to the bid of an advertiser in position $(i + 1)$ plus a minimum increment (typically 0.01). This second-price structure makes the market more user friendly and less susceptible to gaming.

Recognizing these advantages, Yahoo!/Overture also switched to GSP. Let us describe the version of GSP that it implemented. Every

9 We focus on Overture’s implementation, because Google’s system is somewhat more complex. Google adjusts effective bids based on ads’ click-through rates and other factors, such as “relevance.” But under the assumption that all ads have the same relevance and click-through rates conditional on position, Google’s and Yahoo!’s versions of GSP are identical. As we show in Section III, it is straightforward to generalize our analysis to Google’s mechanism.
advertiser submits a bid. Advertisers are arranged on the page in descending order of their bids. The advertiser in the first position pays a price per click that equals the bid of the second advertiser plus an increment; the second advertiser pays the bid of the third advertiser plus an increment; and so forth.

Example (continued). Let us now consider the payments in the environment of the previous example under the GSP mechanism. If all advertisers bid truthfully, then bids are $10, $4, and $2. Payments in GSP will be $4 and $2. Truth-telling is indeed an equilibrium in this example, because no advertiser can benefit by changing his bid. Note that total payments of advertisers 1 and 2 are $800 and $200, respectively.

Generalized Second-Price and VCG Auctions.—GSP looks similar to the VCG mechanism, because both mechanisms set each agent’s payments based only on the allocation and bids of other players, not based on that agent’s own bid. In fact, Google’s advertising materials explicitly refer to Vickrey and state that Google’s “unique auction model uses Nobel Prize–winning economic theory to eliminate ... that feeling that you’ve paid too much.” But GSP is not VCG. In particular, unlike the VCG auction, GSP does not have an equilibrium in dominant strategies, and truth-telling is generally not an equilibrium strategy in GSP (see the example in Remark 3 in Section II). With only one slot, VCG and GSP would be identical. With several slots, the mechanisms are different. GSP charges the advertiser in position i the bid of the advertiser in position $i + 1$. In contrast, VCG charges the advertiser in position i the externality that he imposes on others by taking one of the slots away from them: the total payment of the advertiser in position i is equal to the difference between the aggregate value of clicks that all other advertisers would have received if i were not present in the market and the aggregate value of clicks that all other advertisers receive when i is present. Note that an advertiser in position $j < i$ is not affected by i, and so the externality i imposes on her is zero, while an advertiser in position $j > i$ would have received position $(j - 1)$ in the absence of i, and so the externality i imposes on her is equal to her value per click multiplied by the difference in the number of clicks in positions j and $(j - 1)$.

Example (continued). Let us compute VCG payments for the example considered above. The second advertiser’s payment is $200, as before. However, the payment of the first advertiser is now $600: $200 for the externality that he imposes on advertiser 3 (by forcing him out of position 2) and $400 for the externality that he imposes on advertiser 2 (by moving him from position 1 to position 2 and thus causing him to lose $(200 - 100) = 100$ clicks per hour). Note that in this example, revenues under VCG are lower than under GSP. As we will show later (Remark 1 in Section II), if advertisers were to bid their true values under both mechanisms, revenues would always be higher under GSP.

C. Assessing the Market’s Development

The chronology above suggests three major stages in the development of the sponsored search advertising market. First, ads were sold manually, slowly, in large batches, and on a cost-per-impression basis. Second, Overture implemented keyword-targeted per-click sales and began to streamline advertisement sales with some self-serve bidding interfaces, but with a highly unstable first-price mechanism. Next, Google implemented the GSP auction, which was subsequently adopted by Overture (Yahoo!).

Interestingly, Google and Yahoo! still use GSP, rather than VCG, which would reduce incentives for strategizing and make life easier for advertisers. We see several possible reasons for this. First, VCG is hard to explain to typical advertising buyers. Second, switching to VCG may entail substantial transition costs.
revenues are lower than GSP revenues for the same bids, and advertisers might be slow to stop shading their bids. Third, the revenue consequences of switching to VCG are uncertain: even the strategic equivalence of second-price and English auctions under private values fails to hold in experiments (John Kagel, Ronald M. Harstad, and Dan Levin 1987). And, of course, simply implementing and testing a new system may be costly—imposing switching costs on advertisers as well as on search engines.

II. The Rules of GSP

Let us now formally describe the rules of a sponsored search auction. For a given keyword, there are N objects (positions on the screen, where ads related to that keyword can be displayed) and K bidders (advertisers). The (expected) number of clicks per period received by the advertiser whose ad was placed in position i is α_i. The value per click to advertiser k is s_k. Advertisers are risk-neutral, and advertiser k’s payoff from being in position i is equal to $\alpha_i s_k$ minus his payments to the search engine. Note that these assumptions imply that the number of times a particular position is clicked does not depend on the ads in this and other positions, and also that an advertiser’s value per click does not depend on the position in which its ad is displayed. Without loss of generality, positions are labeled in descending order: for any i and j such that $i < j$, we have $\alpha_i > \alpha_j$.

We model the GSP auction as follows. Suppose at some time t a search engine user enters a given keyword, and, for each k, advertiser k’s last bid submitted for this keyword prior to t was $b^*(k)$; if advertiser k did not submit a bid, we set $b^*(k) = 0$. Let $b^{(i)}$ and $g(j)$ denote the bid and identity of the j-th highest advertiser, respectively. If several advertisers submit the same bid, they are ordered randomly. The mechanism then allocates the top position to the advertiser with the highest bid, $g(1)$, the second position to $g(2)$, and so on, down to position $\min\{N, K\}$. Note that each advertiser gets at most one object. If a user clicks on an advertiser’s link, the advertiser’s payment per click is equal to the next advertiser’s bid. So advertiser $g(i)$’s total payment $p^{(i)}$ is equal to $\alpha_i b^{(i+1)}$ for $i \in \{1, \ldots, \min\{N, K\}\}$, and his payoff is equal to $\alpha_i (s_{g(i)} - b^{(i+1)})$. If there are at least as many positions as advertisers ($N \geq K$), then the last advertiser’s payment $p^{(K)}$ is equal to zero.15

It is also useful to describe explicitly the rules that the VCG mechanism would impose in this setting. The rules for allocating positions are the same as under GSP: position i is assigned to advertiser $g(i)$ with the i-th highest bid $b^{(i)}$. The payments, however, are different. Each advertiser’s payment is equal to the negative externality that he imposes on others, assuming that bids are equal to values. Thus, the payment of the last advertiser who gets allocated a position is the same as under GSP: zero if $N \geq K$; $\alpha_{N-1} b^{(N+1)}$ otherwise. For all other $i < \min\{N, K\}$, payment p^{VCG} induced by VCG will be different from payment p induced by GSP. Namely, $p^{VCG}(i) = (\alpha_i - \alpha_{i+1}) b^{(i+1)} + p^{VCG}(i+1)$.

In the following two sections, we will consider two alternative ways of completing the model: as a simultaneous-move game of complete information, resembling a sealed-bid second-price auction, and as an extensive-form game of incomplete information, resembling an ascending English auction. Before moving on to these models, let us make a few observations about GSP and VCG.

REMARK 1: If all advertisers were to bid the same amounts under the two mechanisms, then each advertiser’s payment would be at least as large under GSP as under VCG.

This is easy to show by induction on advertisers’ payments, starting with the last advertiser who gets assigned a position. For $i = \min\{K, N\}$, $p^{GSP}(i) = p^{VCG}(i) = \alpha_i b^{(i+1)}$. For any $i < \min\{K, N\}$, $\alpha_i b^{(i+1)}$ is greater than $\alpha_{i+1} b^{(i+2)}$, and so on, down to $\alpha_{N-1} b^{(N+1)}$.

13 In actual sponsored search auctions at Google and Yahoo!, advertisers can also choose to place “broad match” bids that match searches that include a keyword along with additional search terms.

14 The actual practice at Overture is to show equal bids according to the order in which the advertisers placed their bids.

15 Although we set the reserve price to zero, search engines charge the last advertiser a positive reserve price. We also assume that a bid can be any nonnegative real number, while in practice bids can be specified only in $.01 increments. Finally, we assume that advertiser $g(i)$ is charged the amount $b^{(i+1)}$ per click, while search engines typically charge one cent more, $(b^{(i+1)} + .01)$.

Let $N \setminus \{i\}$, $p^{V(i)} - p^{V(i+1)} = (\alpha_i - \alpha_{i+1})b^{i+1} \leq \alpha_i b^{i+1} - \alpha_{i+1} b^{i+2} = p^{i} - p^{i+1}$.

REMARK 2: Truth-telling is a dominant strategy under VCG.

This is a well-known property of the VCG mechanism.

REMARK 3: Truth-telling is not a dominant strategy under GSP.

For instance, consider a slight modification of the example from Section I. There are still three advertisers, with values per click of $10, $4, and $2, and two positions. However, the click-through rates of these positions are now almost the same: the first position receives 200 clicks per hour, and the second one gets 199. If all players bid truthfully, then advertiser 1’s payoff is equal to $(10 - 4) \times 200 = 1,200$. If, instead, he shades his bid and bids only $3 per click, he will get the second position, and his payoff will be equal to $(10 - 2) \times 199 = 1,592 > 1,200$.

III. GSP and Locally Envy-Free Equilibria

Advertisers bidding on Yahoo! and Google can change their bids very frequently. We therefore think of these sponsored search auctions as continuous time or infinitely repeated games in which advertisers originally have private information about their types, gradually learn the values of others, and can adjust their bids repeatedly. In principle, the sets of equilibria in such repeated games can be very large, with players potentially punishing each other for deviations. The strategies required to support such equilibria are usually quite complex, however, requiring precise knowledge of the environment and careful implementation. In theory, advertisers could implement such strategies via automated robots, but in practice they may not be able to: bidding software must first be authorized by the search engines, and search engines are unlikely to permit strategies that would allow advertisers to collude and substantially reduce revenues.

We therefore focus on simple strategies and study the rest points of the bidding process: if the vector of bids stabilizes, at what bids can it stabilize? We impose several assumptions and restrictions. First, we assume that all values are common knowledge: over time, advertisers are likely to learn all relevant information about each other’s values. Second, since bids can be changed at any time, stable bids must be best responses to each other—otherwise, an advertiser whose bid is not a best response would have an incentive to change it. Thus, we assume that the bids form an equilibrium in the simultaneous-move, one-shot game of complete information. Third, what are the simple strategies that an advertiser can use to increase his payoff, beyond simple best responses to the other players’ bids?

One clear strategy is to try to force out the player who occupies the position immediately above. Suppose advertiser k bids b_k and is assigned to position i, and advertiser k' bids $b_{k'} > b_k$ and is assigned to position $(i - 1)$. Note that if k raises his bid slightly, his own payoff does not change, but the payoff of the player above him decreases. Of course, player k' can retaliate, and the most she can do is to slightly underbid advertiser k, effectively swapping places with him. If advertiser k is better off after such retaliation, he will indeed want to force player k' out, and the vector of bids will change. Thus, if the vector converges to a rest point, an advertiser in position i should not want to “exchange” positions with the advertiser in position $(i - 1)$. We call such vectors of bids “locally envy-free.”

DEFINITION 1: An equilibrium of the simultaneous-move game induced by GSP is locally envy-free if a player cannot improve

his payoff by exchanging bids with the player ranked one position above him. More formally, in a locally envy-free equilibrium, for any \(i \leq \min\{N + 1, K\} \),

\[
\alpha_i s_{g(i)} - p^{(i)} \geq \alpha_{i-1} s_{g(i)} - p^{(i-1)}.
\]

Of course, it is possible that bids change over time, depending on the players’ strategies and information structure. However, if the behavior ever converges to a vector of bids, that vector should correspond to a locally envy-free equilibrium of the simultaneous-move game \(\Gamma \) induced by GSP. Consequently, we view a locally envy-free equilibrium \(\Gamma \) as a prediction regarding a rest point at which the vector of bids stabilizes. In this section, we study the set of locally envy-free equilibria.

We first show that the set of locally envy-free equilibria maps naturally to a set of stable assignments in a corresponding two-sided matching market. The idea that auctions and two-sided matching models are closely related is not new: it goes back to Vincent P. Crawford and Elsie M. Knoer (1981), Alexander S. Kelso and Crawford (1982), Herman B. Leonard (1983), and Gabrielle Demange, David Gale, and Marilda Sotomayor (1986), and has been studied in detail in a recent paper by John W. Hatfield and Milgrom (2005). Note, however, that in our case the nonstandard auction is very different from those in the papers noted above.

Our environment maps naturally into the most basic assignment model, studied first by Lloyd S. Shapley and Martin Shubik (1972). Consider each position as an agent who is looking for a match with an advertiser. The value of a position-advertiser pair \((i, k)\) is equal to \(\alpha_i s_k\). We call this assignment game \(A\). The advertiser makes its payment \(p_{ik}\) for the position, and the advertiser is left with \(\alpha_i s_k - p_{ik}\). The following pair of lemmas shows that there is a natural mapping from the set of locally envy-free equilibria of GSP to the set of stable assignments. All proofs are in the Appendix.

LEMMA 1: The outcome of any locally envy-free equilibrium of auction \(\Gamma \) is a stable assignment.

LEMMA 2: If the number of advertisers is greater than the number of available positions, then any stable assignment is an outcome of a locally envy-free equilibrium of auction \(\Gamma \).

We will now construct a particular locally envy-free equilibrium of game \(\Gamma \). This equilibrium has two important properties. First, in this equilibrium, advertisers’ payments coincide with their payments in the dominant-strategy equilibrium of VCG. Second, this equilibrium is the worst locally envy-free equilibrium for the search engine and the best locally envy-free equilibrium for the advertisers. Consequently, the revenues of a search engine are (weakly) higher in any locally envy-free equilibrium of GSP than in the dominant-strategy equilibrium of VCG.

Consider the following strategy profile \(B^*\). Without loss of generality, assume that advertisers are labeled in decreasing order of their values, i.e., if \(j < k \), then \(s_j \geq s_k \). For each advertiser \(j \in \{2, \ldots, \min\{N + 1, K\}\} \), bid \(b^*_j\) is equal to \(\frac{p_{V(j-1)}}{\alpha_{j-1}}\), where \(p_{V(j-1)}\) is the payment of advertiser \(j-1\) in the dominant-strategy equilibrium of VCG where all advertisers bid truthfully. Bid \(b^*_1\) is equal to \(s_1\).

THEOREM 1: Strategy profile \(B^*\) is a locally envy-free equilibrium of game \(\Gamma \). In this equilibrium, each advertiser’s position and payment are equal to those in the dominant-strategy equilibrium of the game induced by VCG. In any other locally envy-free equilibrium of game \(\Gamma \), the total revenue of the seller is at least as high as in \(B^*\).

To prove Theorem 1, we first note that payments under strategy profile \(B^*\) coincide with VCG payments and check that \(B^*\) is indeed a locally envy-free equilibrium. This follows from the fact that, by construction, each advertiser is indifferent between remaining in his positions and swapping with the advertiser one position above him. Next, from Lemma 1 we know that every locally envy-free equilibrium corresponds to a stable assignment. The “core elongation” property of the set of stable assignments (Shapley and Shubik 1972; Crawford and Knoer 1981) implies that there exists an

18 This bid does not affect any advertiser’s payment and can be set equal to any value greater than \(b^*_2\).
“advertiser-optimal” assignment \(A \) in that set, such that in any other stable assignment, each advertiser pays at least as much to the search engine as he does in \(A \). Moreover, Leonard (1983) and Demange, Gale, and Sotomayor (1986) show that in general assignment games, payoffs of “buyers” in the buyer-optimal stable assignment coincide with their VCG payoffs, which is sufficient to complete the proof. This is particularly easy to show in the specific environment that we consider, and so for completeness we include a short independent proof.

In the model, we assume that all advertisers are identical along dimensions other than per-click value, and in particular have identical click-through rates. The analysis remains largely the same if, instead, we assume that the CTRs of different advertisers are multiples of one another, i.e., if any advertiser \(k \) assigned to any position \(i \) receives \(\alpha_k \beta_k \) clicks, where \(\alpha_k \) is a position-specific factor and \(\beta_k \) is an advertiser-specific factor. In this case, the versions of GSP implemented by Yahoo! and Google differ.

Under Yahoo!’s system, advertisers are still ranked by bids, and each of them is charged the ad’s text and the quality of an advertiser’s Web page.

Switched to a less transparent system for determining quality scores, setting \(\gamma_i = \beta_i \). Later, however, it switched to a less transparent system for determining quality scores, incorporating such factors as the relevance of an ad’s text and the quality of an advertiser’s Web page.

IV. Main Result: GSP and Generalized English Auction

In the model analyzed in the previous section, we assume that advertisers have converged to a long-run steady state, have learned each other’s values, and no longer have incentives to change their bids. But how do they converge to such a situation? In this section, we introduce the generalized English auction, an analogue of the standard English auction corresponding to GSP, to help us answer this question.

In the generalized English auction, there is a clock showing the current price, which continuously increases over time. Initially, the price on the clock is zero, and all advertisers are in the auction. An advertiser can drop out at any time, and his bid is the price on the clock at the time when he drops out. The auction is over when the next-to-last advertiser drops out. The ad of the last remaining advertiser is placed in the best position on the screen, and this advertiser’s payment per click is equal to the price at which the next-to-last advertiser dropped out. The ad of the next-to-last advertiser is placed second, and his payment per click is equal to the third-highest advertiser’s bid, and so on.

In other words, the vector of bids obtained in the generalized English auction is used to allocate

19 Initially, Google simply used click-through rates to determine quality scores, setting \(\gamma_i = \beta_i \). Later, however, it switched to a less transparent system for determining quality scores, incorporating such factors as the relevance of an ad’s text and the quality of an advertiser’s Web page.

20 If several advertisers drop out simultaneously, one of them is chosen randomly. Whenever an advertiser drops out, the clock is stopped, and other advertisers are also allowed to drop out; again, if several advertisers want to drop out, one of them is chosen randomly. If several advertisers end up dropping out at the same price, the first one to drop out is placed in the lowest position of the still available ones, the next one to the position right above that, and so on.
the objects and compute the prices according to the rules of GSP. With one object, the generalized English auction becomes a simple English auction.

We view the generalized English auction in the same light as the tâtonnement processes in the theory of general equilibrium (see, e.g., Andreu Mas-Colell, Michael D. Whinston, and Jerry R. Green 1995, sect. 17.H) and the salary adjustment process in the theory of matching in labor markets with heterogeneous firms and workers (Crawford and Knoer 1981).

While all these processes, taken literally, happen in “imaginary time,” they are meant to resemble the underlying dynamics of the actual markets, to help us distinguish more plausible equilibria from less plausible ones, characterize their stability and other properties, and examine the significance of the underlying assumptions.

In the case of the tâtonnement and salary adjustment processes, there are many real markets not captured by the generalized English auction, but we believe that it provides a natural and useful approximation.

To define the game formally, assume that there are \(N \geq 2 \) slots and \(K = N + 1 \) advertisers. (Cases with \(K \neq N + 1 \) require only minor modifications in the proof.) Click-through rates \(\alpha_i \) are commonly known, with \(\alpha_{N+1} = 0 \). Advertisers’ per-click valuations \(s_k \) are drawn from a continuous distribution \(F(\cdot) \) on \([0, +\infty) \) with a continuous density function \(f(\cdot) \) that is positive everywhere on \((0, +\infty) \). Each advertiser knows his valuation and the distribution of other advertisers’ valuations.

The strategy of an advertiser assigns the choice of dropping out or not for any history of the game, given that the advertiser has not previously dropped out. In other words, the strategy can be represented as a function \(p_k(i, h, s_k) \), where \(s_k \) is the value per click of advertiser \(k, p_k \) is the price at which he drops out, \(i \) is the number of advertisers remaining (including advertiser \(k \)), and \(h = (b_{i+1}, \ldots, b_{N+1}) \) is the history of prices at which previous advertisers have dropped out. (As a result, the price that advertiser \(k \) would have to pay per click if he dropped out next is equal to \(b_{i+1} \), unless the history is empty, in which case we say that \(b_{i+1} = 0 \).) The following theorem shows that this game has a unique perfect Bayesian equilibrium with strategies continuous in advertisers’ valuations.

THEOREM 2: In the unique perfect Bayesian equilibrium of the generalized English auction with strategies continuous in \(s_k \), an advertiser with value \(s_k \) drops out at price

\[
(2) \quad p_k(i, h, s_k) = s_k - \frac{\alpha_i}{\alpha_{i-1}} (s_k - b_{i+1}).
\]

In this equilibrium, each advertiser’s resulting position and payoff are the same as in the dominant-strategy equilibrium of the game induced by VCG. This equilibrium is ex post: the strategy of each advertiser is a best response to other advertisers’ strategies regardless of their realized values.

The intuition of the proof is as follows. First, with \(i \) players remaining and the next highest bid equal to \(b_{i+1} \), it is a dominated strategy for a player with value \(s \) to drop out before price \(p \) reaches the level at which he is indifferent between getting position \(i \) and paying \(b_{i+1} \) per click and getting position \(i - 1 \) and paying \(p \) per click. Next, if for some set of types it is not optimal to drop out at this “borderline” price level, we can consider the lowest such type, and

\[21\] This version of the English auction is also known as the “Japanese” or “button” auction.

\[22\] Of course, the generalized English auction is very different from the salary adjustment process of Crawford and Knoer (1981) and its application to multi-unit auctions (Demange et al. 1986). In Demange et al. (1986), bidding proceeds simultaneously for all items and the auctioneer keeps track of a vector of item-specific prices, while in the generalized English auction bidding proceeds, in essence, sequentially, and the auctioneer keeps track of only one price.

\[23\] Without this restriction, multiple equilibria exist, even in the simplest English auction with two bidders and one object. For example, suppose there is one object for sale and two bidders with independent private values for this object distributed exponentially on \([0, \infty) \). Consider the following pair of strategies. If a bidder’s value is in the interval \([0, 1] \) or in the interval \([2, \infty) \), he drops out when the clock reaches his value. If bidder 1’s value is in the interval \((1, 2) \), he drops out at 1, and if bidder 2’s value is in the interval \((1, 2) \), he drops out at 2. This pair of strategies, together with appropriate beliefs, forms a perfect Bayesian equilibrium.
then once the clock reaches this price level, a
player of this type will know that he has the
lowest per-click value of the remaining players.
But then he will also know that the other re-
main ing players will drop out only at price
levels at which he will find it unprofitable to
compete with them for the higher positions.

The result of Theorem 2 resembles the classic
result on the equivalence of the English auction
and the second-price sealed-bid auction under
private values (Vickrey 1961). Note, however,
that the intuition is very different: Vickrey’s
result follows simply from the existence of equilibria in dominant strategies, whereas in our
case such strategies do not exist, and bids do
depend on other player’s bids. Also, our result is
very different from the revenue equivalence the-
orem: payoffs in the generalized English auction coincide with VCG payments for all
realizations of values, not only in expectation,
and the result does not hinge on the assumptions
of symmetric bidders or common priors.

The equilibrium described in Theorem 2 is an
ex post equilibrium. As long as all advertisers
other than advertiser k follow the equilibrium
strategy described in Theorem 2, it is a best
response for advertiser k to follow his equilibrium
strategy, for any realization of other advertisers’
values. Thus, the outcome implemented by this
mechanism depends only on the realization of
advertisers’ values and does not depend on adver-
tisers’ beliefs about each other’s types.

Clearly, any dominant strategy solvable game
has an ex post equilibrium. However, the
generalized English auction is not dominant strat-
ey solvable. This combination of properties is
quite striking: the equilibrium is unique and
efficient, and the strategy of each advertiser
does not depend on the distribution of other
advertisers’ values, yet advertisers do not have
dominant strategies.24 The generalized English
auction is a particularly interesting example,
because it can be viewed as a model of a mech-
anism that has “emerged in the wild.”

V. Conclusion

We investigate a new mechanism that we call
the generalized second-price auction. GSP is
tailored to the unique features of the market for
Internet advertisements. As far as we know, this
mechanism was first used in 2002. As of May
2006, the annual revenues from GSP auctions
were on the order of $10 billion.

GSP looks similar to the VCG mechanism,
because just like in the standard second-price
auction, the payment of a bidder does not di-
rectly depend on his bid. Although GSP looks
similar to VCG, its properties are very different,
and equilibrium behavior is far from straight-
forward. In particular, unlike the VCG mecha-
nism, GSP generally does not have an
equilibrium in dominant strategies, and truth-
telling is not an equilibrium of GSP. We show
that the generalized English auction that corre-

cponds to the generalized second-price auction
has a unique equilibrium.

This equilibrium has some notable properties.
The bid functions have explicit analytic formu-
las, which, combined with equilibrium unique-

ness, make our results a useful starting point for
empirical analysis. Moreover, these functions
do not depend on bidders’ beliefs about each
other’s types: the outcome of the auction de-

pends only on the realizations of bidders’ val-

ues. This is one of the very few mechanisms
encountered in practice that are not dominant
strategy solvable and nevertheless have this
property. It is particularly interesting that a
mechanism with such notable features in theory
and such enormous popularity in practice de-

veloped as a result of evolution of inefficient mar-
ket institutions, which were gradually replaced
by increasingly superior designs.

24 Dirk Bergemann and Stephen Morris (2005) show that
an outcome implementable by robust mechanisms must be
implementable in dominant strategies. Indeed, the outcome
implemented by the generalized English auction can be
implemented in dominant strategies by the VCG mecha-
nism; however, VCG is not the mechanism that is used in
practice. Philippe Jehiel and Benny Moldovanu (2001) and
Jehiel et al. (2006) show that, generically, any efficient
choice function is not Bayes-Nash implementable and any
nontrivial choice function is not ex post implementable, if
values are interdependent and signals are multidimensional.

Of course, in our model, values are private, and, crucially,
signals are single-dimensional, even though multiple differ-
ent objects are for sale. This makes efficient ex post imple-
mentation feasible. For other examples of mechanisms that
allocate multiple different objects to bidders with single-
dimensional types, see Moldovanu and Aner Sela (2001)
and Thomas Kittsteiner and Moldovanu (2005).
APPENDIX: PROOFS

PROOF OF LEMMA 1:

By definition, in any locally envy-free equilibrium outcome, no advertiser can profitably rematch with the position assigned to the advertiser right above him. Also, no advertiser (a) can profitably rematch with a position assigned to an advertiser below him (b) — if such a profitable rematching existed, advertiser a would find it profitable to slightly undercut advertiser b in game Γ and get b’s position and payment. But this would contradict the assumption that we are in equilibrium.25

Hence, we need only show that no advertiser can profitably rematch with the position assigned to an advertiser more than one spot above him. First, note that for any i, the advertiser assigned to position i has a higher per-click valuation than the advertiser assigned to position i + 1 and, therefore, the advertiser with the highest per-click value must be assigned to the top position, the advertiser with the second-highest per-click value to the second-highest position, and so on.

Indeed, suppose \(s_{gi} \) and \(s_{g(i + 1)} \) are the values of advertisers assigned to positions i and i + 1. Equilibrium restrictions imply that
\[
\alpha_i s_{gi} - p^{(i)} \geq \alpha_{i + 1} s_{g(i + 1)} - p^{(i + 1)}
\]
(nobody wants to move one position down), and local envy-freeness implies that
\[
\alpha_i s_{gi} - p^{(i)} \geq \alpha_{i + 1} s_{g(i + 1)} - p^{(i + 1)}
\]
(nobody wants to move one position up). Manipulating the inequalities above yields
\[
\alpha_i s_{gi} - \alpha_{i + 1} s_{g(i + 1)} \geq \alpha_i s_{g(i + 1)} + \alpha_{i + 1} s_{gi} \geq \alpha_{i + 1} s_{g(i + 1)}
\]
thus \(\alpha_i > \alpha_{i + 1} \). Since \(\alpha_i > \alpha_{i + 1} \), we have \(s_{gi} \geq s_{g(i + 1)} \), and hence the locally envy-free equilibrium outcome must be an assortative match.

Now, let us show that no advertiser can profitably rematch with the position assigned to an advertiser more than one spot above him. Suppose the advertiser assigned to position i is considering rematching with position \(m < i - 1 \). Since the equilibrium is locally envy-free, we have
\[
\alpha_i s_{gi} - p^{(i)} \geq \alpha_{i - 1} s_{g(i - 1)} - p^{(i - 1)},
\]
\[
\alpha_{i - 1} s_{g(i - 1)} - p^{(i - 1)} \geq \alpha_{i - 2} s_{g(i - 2)} - p^{(i - 2)},
\]
\[
\vdots
\]
\[
\alpha_{m + 1} s_{g(m + 1)} - p^{(m + 1)} \geq \alpha_{m} s_{g(m + 1)} - p^{(m)}.
\]

Since \(\alpha_j > \alpha_{j + 1} \) for any j, and \(s_{g(i)} > s_{g(j)} \) for any \(i < j \), the inequalities above remain valid after replacing \(s_{g(i)} \) with \(s_{g(j)} \). Doing that, then adding all inequalities up, and canceling out the redundant elements, we get
\[
\alpha_i s_{gi} - p^{(i)} \geq \alpha_{m} s_{g(m + 1)} = p^{(m)}.
\]

Since \(\alpha_j > \alpha_{j + 1} \) for any j, and \(s_{g(i)} > s_{g(j)} \) for any \(i < j \), the inequalities above remain valid after replacing \(s_{g(i)} \) with \(s_{g(j)} \). Doing that, then adding all inequalities up, and canceling out the redundant elements, we get
\[
\alpha_i s_{gi} - p^{(i)} \geq \alpha_{m} s_{g(m + 1)} - p^{(m)}.
\]

But that implies that the advertiser assigned to position i cannot rematch profitably with position m, and we are done.

PROOF OF LEMMA 2:

Take a stable assignment. By a result of Shapley and Shubik (1972), this assignment must be efficient, and hence assortative, and so without loss of generality we can assume that advertisers are labeled in decreasing order of their bids (i.e., \(s_j > s_k \) whenever \(j < k \)) and that advertiser i is matched with position i, with associated payment \(p_i \).

Let us construct a locally envy-free equilibrium with the corresponding outcome. Let \(b_1 = s_1 \) and \(b_i = p_{j - 1}/\alpha_{j - 1} \) for \(i > 1 \). Let us show that this set of strategies is a locally envy-free equilibrium. First, note that for any \(i \), \(b_i > b_{i + 1} \) (because otherwise we would have, for some i, \(p_{i - 1}/\alpha_{i - 1} \leq p_i/\alpha_i \Rightarrow s_i - p_{i - 1}/\alpha_{i - 1} \geq s_i - p_i/\alpha_i \Rightarrow \alpha_{i - 1} s_i - p_{i - 1} > \alpha_i s_i - p_i \), which would imply that player i could rematch profitably). Therefore, position allocations and payments resulting from this strategy profile will coincide with those in the original stable assignment. To see that this strategy profile is an equilibrium, note that deviating and moving to a different position in this strategy profile is at most as profitable for any player as rematching with the corresponding position in the assignment game. To see that this equilibrium is locally envy-free, note that the payoff from swapping with the bidder above is exactly equal

25 This argument relies on the fact that in equilibrium, no two (or more) advertisers bid the same amount, which is straightforward to prove: since all advertisers’ per-click values are different, and all ties are broken randomly with equal probabilities, at least one such advertisers would find it profitable to bid slightly higher or slightly lower.
to the payoff from rematching with that player’s position in the assignment game.

PROOF OF THEOREM 1:

First, we need to check that the order of the bids is preserved, i.e., \(b_j^* > b_{j+1}^* \) for any \(j < \min\{N, K\} \). For \(j \geq 2 \), this is equivalent to

\[
\frac{p^{V,(j-1)}}{\alpha_{j-1}} > \frac{p^{V,(j)}}{\alpha_j}
\]

\(\uparrow \)

\[
\frac{(\alpha_{j-1} - \alpha_j)s_j + p^{V,(j)}}{\alpha_{j-1}} > \frac{p^{V,(j)}}{\alpha_j}
\]

\(\uparrow \)

\[
\alpha_j(\alpha_{j-1} - \alpha_j)s_j > (\alpha_{j-1} - \alpha_j)p^{V,(j)}
\]

\(\uparrow \)

\[
\alpha_j s_j > p^{V,(j)}.
\]

For \(j = 1 \), \(b_j^* > b_{j+1}^* \) is equivalent to

\[
s_1 > \frac{p^{V,(1)}}{\alpha_1}
\]

\(\uparrow \)

\[
\alpha_1 s_1 > p^{V,(1)}.
\]

To see that for any \(j \), \(\alpha_j s_j > p^{V,(j)} \), note first that in the game induced by VCG, each player can guarantee himself the payoff of at least zero (by bidding zero), and hence in any equilibrium his payoff from clicks is at least as high as his payment. To prove that the inequality is strict, note that if player \(j \)'s value per click were slightly lower, e.g., \(s_j - \Delta \) instead of \(s_j \), \(\Delta < s_j - s_{j+1} \), then his payment in the truth-telling equilibrium would still be the same (because it does not depend on his own bid, given the allocation of positions), and so \(p^{V,(j)} \leq \alpha_j(s_j - \Delta) < \alpha_j s_j \). Thus, for any \(j \), \(b_j^* > b_{j+1}^* \), and therefore each bidder’s position is the same as in the truthful equilibrium of VCG. Therefore, by construction, payments are also the same.

Next, to see that no bidder \(j \) can benefit by bidding less than \(b_j^* \), suppose that he bids an amount \(b' < b_j^* \) that puts him in position \(j' > j \). Then, by construction, his payment will be equal to the amount that he would need to pay to be in position \(j' \) under VCG, provided that other players bid truthfully. But truthful bidding is an equilibrium under VCG, and so such deviation cannot be profitable there—hence, it cannot be profitable in strategy profile \(B^* \) of game \(\Gamma \) either.

To see that no bidder \(j \) can benefit by bidding more than \(b_j^* \), suppose that he bids an amount \(b' > b_j^* \) that puts him in position \(j' < j \). Then the net payoff from this deviation is equal to \((\alpha_{j'} - \alpha_j)s_j - (\alpha_{j'} - \alpha_j)b_j^* - (\alpha_{j'} - \alpha_j)b_{j+1} < (\alpha_{j'} - \alpha_j)s_j - (\alpha_{j'} - \alpha_j)b_j^* - (\alpha_{j'} - \alpha_j)b_{j+1} \). But since \(s_j \leq s_{j+1} \) for any \(i < j \), the last expression is less than or equal to zero, and hence the deviation is not profitable.

To check that this equilibrium is locally envy-free, note that if bidder \(j \) swapped his bids with bidder \(j - 1 \), his payoff would change by \((\alpha_{j-1} - \alpha_j)s_j - (\alpha_{j-1} - \alpha_j)b_j^* - (\alpha_{j-1} - \alpha_j)b_{j+1} < (\alpha_{j-1} - \alpha_j)s_j - (\alpha_{j-1} - \alpha_j)b_j^* - (\alpha_{j-1} - \alpha_j)b_{j+1} \). In other words, each bidder is indifferent between his actual payoff and his payoff after swapping bids with the bidder above, and hence the equilibrium is locally envy-free.

Let us now show that \(B^* \) is the best locally envy-free equilibrium for the bidders and the worst locally envy-free equilibrium for the search engine. The core-elongation property of the assignment game (Shapley and Shubik 1972; Crawford and Knoer 1981) implies that there exists an assignment that is the best stable assignment for all advertisers and the worst stable assignment for all positions. Suppose this assignment is characterized by a vector of payments \(p = (p_1, \ldots, p_K) \). Let \(p^V = (p_1^V, \ldots, p_K^V) \) be the set of dominant-strategy VCG payments, i.e., the set of payments in equilibrium \(B^* \) of game \(\Gamma \).

In any stable assignment, \(p_K^V \) must be at least as high as \(\alpha_K s_{K+1} \), since otherwise advertiser \(K + 1 \) would find it profitable to match with position \(K \). On the other hand, \(p_K^V = \alpha_K s_{K+1} \),
and hence in the advertiser-optimal stable assignment, $p_K = p_K^*.$

Next, in any stable assignment, it must be the case that $p_{K-1} - p_K \geq (\alpha_{K-1} - \alpha_K)s_K$—otherwise, advertiser K would find it profitable to rematch with position $K - 1$. Hence, $p_{K-1} \geq (\alpha_{K-1} - \alpha_K)s_K + p_K \geq (\alpha_{K-1} - \alpha_K)s_K + p_K^*$, and so in the advertiser-optimal stable assignment, $p_{K-1} = p_{K-1}^*.$

Proceeding by induction, we get $p_j = p_j^*$ for any $j \leq K$ in the advertiser-optimal stable assignment, and so in any locally envy-free equilibrium of game Γ, the total revenue of the seller is at least as high as $\sum_{j=1}^K p_j^*.$

PROOF OF THEOREM 2:

First, note that in equilibrium, for any player k, any history h, and any number of remaining players i, the drop-out price $p_k(i, h, s_k)$ tends to infinity as s_k tends to infinity. (Otherwise, there would exist a player for whom it was optimal to deviate from his strategy and stay longer, for a sufficiently high value s.) Next, take any equilibrium of the generalized English auction. Note that if in this equilibrium $p_k(i, h, s_k) > p_k(i, h, s'_k)$ for some k, h, i, and types $s_k < s'_k$, then it has to be the case that both types s_k and s'_k are indifferent between dropping out at $p_k(i, h, s_k)$ and $p_k(i, h, s'_k)$. (Otherwise, one of them would be able to increase his payoff by mimicking the other.) Consequently, we can “swap” such players’ strategies, and therefore there exists an “observationally equivalent” equilibrium in which strategies are nondecreasing in types; also, they are still continuous in own values. Consider this equilibrium profile of strategies $p_k(i, h, s_k)$.

Let $q(i, b_{i+1}, s)$ be such a price that a player with value s is indifferent between getting position i at price b_{i+1} and position $i - 1$ at price $q(i, b_{i+1}, s)$. That is,

$$\alpha_{i-1}(s - q(i, b_{i+1}, s)) = \alpha_i(s - b_{i+1})$$

\[\Downarrow\]

$$q(i, b_{i+1}, s) = s - \frac{\alpha_i}{\alpha_{i-1}}(s - b_{i+1}).$$

Slightly abusing notation, let $q(i, h, s) = q(i, b_{i+1}, s)$, where b_{i+1} is the last bid at which a player dropped out in history h. (This player received position $i + 1$. If history h is empty, we set $b_{i+1} = 0$.) We will now show that for any i, k, h, and s_k, $p_k(i, h, s_k) = q(i, h, s_k)$.

Suppose that is not the case, and take the largest i for which there exist such history h (with the last player dropping out at b_{i+1}), player k, and type s_k (surviving with positive probability on the equilibrium path) that $p_k(i, h, s_k) \neq q(i, h, s_k)$. Since by assumption, all strategies up to this stage were $p_k(\cdot, \cdot, \cdot) = q(\cdot, \cdot, \cdot)$, we know that there exists a value $s_{\text{min}} \geq b_{i+1}$, such that all players with values less than s_{min} have dropped out, and all players with values greater than s_{min} are still in the auction.

Step 1: Suppose for some type $s \geq s_{\text{min}}$, $p_{\text{max}}(i, h, s) \equiv \max_k p_k(i, h, s) > q(i, h, s)$. Let s_0 be the smallest type, and let k be the corresponding player, such that $p_k(i, h, s_0) = p_{\text{max}}(i, h, s)$; clearly, $s_0 \leq s$. Without loss of generality, we can assume that there is a positive mass of types of other players dropping out at or before $p_k(i, h, s_0).$\footnote{Otherwise, we have $\forall s \geq s_0, p_k(i, h, s) \leq p_{\text{max}}(i, h, s) \equiv p_{\text{max}}(i, h, s)$ and so for some $s' \leq s_0$ we have $p_{\text{max}}(i, h, s') > q(i, h, s')$, and for some $s > s_0$ we have $p_{\text{max}}(i, h, s') > q(i, h, s')$. But we also have $p_k(i, h, s_0) = p_{\text{max}}(i, h, s) > q(i, h, s)$, and so $s_0 \leq s$.}

Step 1(a). Suppose first that there is a positive mass of types of other players dropping out at $p_k(i, h, s_0) = p_{\text{max}}(i, h, s)$. That implies that with positive probability, player k of type s_0 will remain in the subgame following the drop-out of some other player at $p_k(i, h, s_0)$ (since ties are broken randomly). Let us show that in this subgame, player k of type s_0 will be the first player to drop out with probability 1. Suppose that is not the case, and let $l < i - 1$ be the smallest number such that he gets position l with positive probability.

Consider any continuation of history h, h_{l+2}, such that the last player to drop out in that history gets position $l + 2$ and drops out at price b_{l+2}; player k of type s_0 is one of the remaining $l + 1$ players, there is a positive probability that player k gets position l in the continuation subgame following history h_{l+2}, and there is zero
probability that player k gets position m for any $m < l$. Note that $s_0 \geq b_{l+2}$—otherwise, it would have been optimal for player k to drop out earlier. Consider $p_k(l + 1, h_{l+2}, s_0)$. Since player k of type s_0 gets position l with positive probability in this subgame, there must be a positive mass of types of other players who drop out no later than $p_k(l + 1, h_{l+2}, s_0)$. Take the highest such type, s', and the corresponding player j. It has to be the case that $s' > s_0 \geq b_{l+2}$. It also has to be the case that $q(l + 1, h_{l+2}, s')$ is less than or equal to $p_k(l + 1, h_{l+2}, s_0)$. (Otherwise, player j with value s' would be playing a strategy weakly dominated by dropping out at $q(l + 1, h_{l+2}, s')$, with a positive probability of earning strictly less than he would have earned if he waited until that price level.) Therefore, $p_k(l + 1, h_{l+2}, s_0) \geq q(l + 1, h_{l+2}, s') > q(l + 1, h_{l+2}, s_0) \geq b_{l+2}$. Let us show that it would be strictly better for player k with type s_0 to drop out at $q(l + 1, h_{l+2}, s_0)$ instead of waiting until $p_k(l + 1, h_{l+2}, s_0)$. Indeed, if nobody else drops out in between, or someone drops out before $q(l + 1, h_{l+2}, s_0)$, these strategies would result in identical payoffs. Otherwise, payoffs are different, and this happens with positive probability. Under the former strategy, player k earns

$$
\alpha_{l+1}(s_0 - b_{l+2}).
$$

Under the latter strategy, he earns

$$
\alpha_l(s_0 - b_{l+1}),
$$

where b_{l+1} is the price at which somebody else dropped out. (The probability of getting a spot $m < l$ is zero by construction.) With probability 1, $b_{l+1} \geq q(l + 1, h_{l+2}, s_0)$, and with positive probability, $b_{l+1} > q(l + 1, h_{l+2}, s_0)$, so the expected payoff from waiting until $p_k(l + 1, h_{l+2}, s_0)$ is strictly less than the expected payoff from dropping out at $q(l + 1, h_{l+2}, s_0)$: $E[\alpha_l(s_0 - b_{l+1})] < \alpha_l(s_0 - q(l + 1, h_{l+2}, s_0)) = \alpha_l(s_0 - (s_0 - (\alpha_{l+1}(s_0 - b_{l+2})))) = \alpha_{l+1}(s_0 - b_{l+2})$.

Therefore, in the subgame following the drop-out of some other player at $p_k(i, h, s_0)$, player k of type s_0 gets position $i - 1$ with probability 1, and therefore his payoff is $\alpha_{i-1}(s_0 - p_k(i, h, s_0))$. Now suppose player k dropped out at a price $p_k(i, h, s_0) - \varepsilon$ instead of waiting until $p_k(i, h, s_0)$. If somebody else drops out before $p_k(i, h, s_0) - \varepsilon$ or after $p_k(i, h, s_0)$, or drops out at $p_k(i, h, s_0)$ but player k is chosen to drop out first, then these two strategies result in identical payoffs. The probability that somebody drops out in the interval $(p_k(i, h, s_0) - \varepsilon, p_k(i, h, s_0))$ goes to zero as ε goes to zero, and the possible difference in the payoffs is finite, so the difference in payoffs due to this contingency goes to zero as ε goes to zero. Finally, there is a positive probability that somebody else drops out at $p_k(i, h, s_0)$ and is chosen to drop out first. If player k drops out before that, at $p_k(i, h, s_0) - \varepsilon$, his payoff is $\alpha_l(s_0 - b_{l+1})$. If he waits until $p_k(i, h, s_0)$, we know that in the subsequent subgame his payoff is $\alpha_{i-1}(s_0 - p_k(i, h, s_0)) < \alpha_{i-1}(s_0 - q(i, h, s_0)) = \alpha_l(s_0 - b_{l+1})$. Therefore, for a sufficiently small ε, it is strictly better for player k with value s_0 to drop out at $p_k(i, h, s_0) - \varepsilon$ instead of waiting until $p_k(i, h, s_0)$, which contradicts the assumption that $\{p_k(\cdot, \cdot, \cdot, \cdot)\}$ is an equilibrium.

Step 1(b). Now, suppose there is mass zero of types of other players dropping out at $p_k(i, h, s_0) = p_{max}(i, h, s)$, but there is a positive mass dropping out before $p_k(i, h, s_0)$. Consider a sequence of small positive numbers (ε_n) converging to 0 as $n \to \infty$ and sequences (π^0_n), (π^{l-1}_n), where π^n_l is the probability that player k with value s_0 will end up in position l if another player drops out at price $(p_k(i, h, s_0) - \varepsilon_n)$. Let $B = \alpha_l(s_0)$, i.e., the maximum payoff that a player with value s_0 can possibly get in the auction. Now, if (π^{l-1}_n) converges to a and (π^n_l) converges to zero for all $l < i - 1$, then, by an argument similar to the one at the end of Step 1(a), it is better for player k of type s_0 to drop out at some time $p_k(i, h, s_0) - \varepsilon$. If (π^{l-1}_n) does not converge to 1, take the smallest (i.e., best) l for which (π^n_l) does not converge to zero, and take a subsequence of (ε_n) along which (π^n_l) converges to some positive number p. Let s_1 be the value such that for a random draw of types of remaining players other than k, condi-

\footnote{If some other player drops out between $p_k(i, h, s_0) - \varepsilon$ and $p_k(i, h, s_0)$, the benefit of staying longer tends to zero (it is at most $B(1 - \pi^{l-1}_n)$), while the cost converges to a positive number (the difference between getting position i at price b_{l+1} and position $i - 1$ at price $p_k(i, h, s_0)$).}
tional on each draw being greater than \(s_{2p} \), the probability that at least one type is less than \(s_1 \) is equal to \(\rho/2 \) (i.e., \(\Pi_{s,k} [(1 - F(s_1))/(1 - F(s_{2p}))] = 1 - \rho/2 \)). Clearly, \(s_1 > s_{2p} \). Take a small \(\varepsilon_n \), and consider a subgame following some continuation of history \(h, h_{l+2}, \) where the \((l + 2) \)th player drops out at \(b_{l+2}, l + 1 \) players, including player \(k \), remain, and player \(k \) gets position \(l \) with probability close to \(\rho \) (and any position better than \(l \) with probability close to zero). Consider \(p_k(l + 1, h_{l+2}, s_0) \). There must exist a player, \(j \), such that \(p_j(l + 1, h_{l+2}, s_1) \leq p_k(l + 1, h_{l+2}, s_0) \). (Otherwise, the probability of player \(k \) surviving until position \(l \) is less than or close to \(\rho/2 \), and thus cannot be close to \(\rho \).)

But then, by an argument similar to the one in Step 1(a), in this subgame it is strictly better for player \(k \) to drop out slightly earlier than \(p_j(l + 1, h_{l+2}, s_0) \): conditional on somebody else dropping out in between, the benefit is close to zero (the probability of getting a position better than \(l \) times the highest possible benefit \(B_0 \)), while the cost is close to a positive number (the payoff from being in position \(l + 1 \) at price \(b_{l+2} \) versus the payoff from being in position \(l \) at price at least \(s_1 - (\alpha_{i+1}/\alpha)(s_1 - b_{l+2}) \))—contradiction.

Step 2: In Step 1, we showed that \(p_{\text{max}}(i, h, s) = \max_k p_k(i, h, s) \) cannot be greater than \(q(i, h, s) \), and therefore for any player \(k \) and type \(s \geq s_{\text{min}} \), \(p_k(i, h, s) \leq q(i, h, s) \). Take some value \(s > s_{\text{min}} \) and player \(k \). Suppose \(p_k(i, h, s) < q(i, h, s) \). Take some other player \(j \). From Step 1, we have \(p_j(i, h, s) \leq q(i, h, s) \), and therefore if player \(k \) waited until \(q(i, h, s) \) instead of dropping out at \(p_k(i, h, s) \), the probability that someone dropped out in between would be positive, and hence the payoff would be strictly greater (by the definition of function \(q(\cdot) \)), player \(k \) with value \(s \) strictly prefers being in position \(i - 1 \) or higher at any price less than \(q(i, h, s) \) to being in position \(i \) at price \(b_{i+1} \), which is impossible in equilibrium. Hence, \(p_k(i, h, s) = q(i, h, s) \) for all \(s > s_{\text{min}} \). By continuity, we also have \(p_k(i, h, s_{\text{min}}) = q(i, h, s_{\text{min}}) \).

REFERENCES

This article has been cited by:

2. Eric Bax, John Donald, Melissa Gerber, Lisa Giaffo, Tanisha Sharma, Nikki Thompson, Kimberly Williams. Data Consortia 489-498. [Crossref]

12. Ce Chi, Kaixuan Ji, Avinab Marahatta, Fa Zhang, Youshi Wang, Zhiyong Liu. An Energy-Saving-Oriented Incentive Mechanism in Colocation Data Centers 1-6. [Crossref]

19. Xiao-Bai Li, Xiaoping Liu, Luvai Motiwalla. 2020. Valuing Personal Data with Privacy Consideration. Decision Sciences 2. . [Crossref]

20. Yubin Duan, Guo-Ju Gao, Ming-Jun Xiao, Jie Wu. 2020. Cloaking Region Based Passenger Privacy Protection in Ride-Hailing Systems. Journal of Computer Science and Technology 35:3, 629-646. [Crossref]
21. Yu-Wei Hsieh, Matthew Shum. Bayesian Estimation of Linear Sum Assignment Problems 323-339. [Crossref]
32. Bowei Chen, Jingmin Huang, Yufei Huang, Stefanos Kollias, Shigang Yue. 2020. Combining guaranteed and spot markets in display advertising: Selling guaranteed page views with stochastic demand. *European Journal of Operational Research* 280:3, 1144-1159. [Crossref]
33. Narendra Agrawal, Sami Najafi-Asadolahi, Stephen A. Smith. Optimization of Operational Decisions in Digital Advertising: A Literature Review 99-146. [Crossref]
36. Е.Р. Нургалиев, Е.Р. Nurgaliyev, М.С. Турпищева, М.С. Turpishev. 2020. РЕАЛИЗАЦИЯ СЕРВИСА И ОПТИМИЗАЦИИ СОВМЕСТНЫХ ПОЕЗДОК АВТОМОБИЛЬНЫМ ТРАНСПОРТОМ. Транспорт: наука, техника, управление 2, 53-56. [Crossref]
39. José Alcalde, Matthias Dahm. 2020. Supplier Diversity Before the Time of Cholera. SSRN Electronic Journal. [Crossref]

42. Anja Lambrecht, Catherine E. Tucker. 2020. Apparent Algorithmic Bias and Algorithmic Learning. SSRN Electronic Journal. [Crossref]

43. Manish Pathak, Ujwala Musku. Dynamic Bidding with Contextual Bid Decision Trees in Digital Advertisement 463–473. [Crossref]

44. Bernhard Kasberger. 2020. When Can Auctions Maximize Post-Auction Welfare?. SSRN Electronic Journal. [Crossref]

45. Anne Cumpston, Peyman Khezr. 2020. Multi-Unit Auctions: A Survey of Theoretical Literature. SSRN Electronic Journal. [Crossref]

46. Jan Kraemer, Oliver Zierke. 2020. Paying for Prominence: The Effect of Sponsored Rankings on the Incentives to Invest in the Quality of Free Content on Dominant Online Platforms. SSRN Electronic Journal. [Crossref]

49. Alex Jiyoung Kim, Sungha Jang, Hyun S. Shin. 2019. How should retail advertisers manage multiple keywords in paid search advertising?. Journal of Business Research. [Crossref]

50. Feng Wang, Li Zuo, Zhi Yang, Yueyan Wu. 2019. Mobile searching versus online searching: differential effects of paid search keywords on direct and indirect sales. Journal of the Academy of Marketing Science 47:6, 1151-1165. [Crossref]

51. Yubin Duan, Guojie Gao, Mingjun Xiao, Jie Wu. A Privacy-Preserving Order Dispatch Scheme for Ride-Hailing Services 118-126. [Crossref]

53. Jianhua Han, Yong Yu, Feng Liu, Ruiming Tang, Yuzhou Zhang. Optimizing Ranking Algorithm in Recommender System via Deep Reinforcement Learning 22-26. [Crossref]

54. Jinsoo Bae, John H. Kagel. 2019. A dataset collected in a lab experiment for the Generalized Second Price auction. Data in Brief 26, 104469. [Crossref]

55. Brian T. Ratchford. The Impact of Digital Innovations on Marketing and Consumers 35-61. [Crossref]

56. Juanjuan Li, Yong Yuan, Fei-Yue Wang. 2019. A novel GSP auction mechanism for ranking Bitcoin transactions in blockchain mining. Decision Support Systems 124, 113094. [Crossref]

58. Bowei Chen, Mohan Kankanhalli. 2019. Pricing Average Price Advertising Options When Underlying Spot Market Prices Are Discontinuous. IEEE Transactions on Knowledge and Data Engineering 31:9, 1765-1778. [Crossref]
59. Francisco Lopez-Navarrete, Joaquin Sanchez-Soriano, Oscar M. Bonastre. 2019. Allocating revenues in a Smart TV ecosystem. *International Transactions in Operational Research* **26**:5, 1611-1632. [Crossref]

64. W. Jason Choi, Amin Sayedi. 2019. Learning in Online Advertising. *Marketing Science* **38**:4, 584-608. [Crossref]

66. Justin M. Rao, Andrey Simonov. 2019. Firms’ reactions to public information on business practices: The case of search advertising. *Quantitative Marketing and Economics* **17**:2, 105-134. [Crossref]

71. Avi Goldfarb, Catherine Tucker. 2019. Digital Economics. *Journal of Economic Literature* **57**:1, 3–43. [Abstract] [View PDF article] [PDF with links]

78. Avi Goldfarb, Catherine Tucker. Digital marketing 259-290. [Crossref]
79. Xiao Bai, B. Barla Cambazoglu. 2019. Impact of response latency on sponsored search. *Information Processing & Management* 56:1, 110-129. [Crossref]

82. Karan Aggarwal, Pranjul Yadav, S. Sathiya Keerthi. Domain adaptation in display advertising 178-186. [Crossref]

85. Muhammad Izhar Mehar, Charles Louis Shier, Alana Giambattista, Elgar Gong, Gabrielle Fletcher, Ryan Sanayehie, Henry M. Kim, Marek Laskowski. 2019. Understanding a Revolutionary and Flawed Grand Experiment in Blockchain. *Journal of Cases on Information Technology* 21:1, 19-32. [Crossref]

89. Carsten D. Schultz, Christian Holsing. Differences Across Device Usage in Search Engine Advertising 736-758. [Crossref]

91. Roumen Vragov, Richard Di Shang, Vernon Smith, David Porter. 2019. Let’s play the search game: Strategic and behavioral properties of sponsored search auction mechanisms. *Electronic Commerce Research and Applications* 33, 100809. [Crossref]

93. Rui Qin, Yong Yuan, Fei-Yue Wang. 2018. A Pareto optimal mechanism for demand-side platforms in real time bidding advertising markets. *Information Sciences* 469, 119-140. [Crossref]

96. Andreas Hefi. 2018. Limited attention, competition and welfare. *Journal of Economic Theory* 178, 318-359. [Crossref]

100. Patrick Maillé, Bruno Tuffin. 2018. Auctions for online ad space among advertisers sensitive to both views and clicks. *Electronic Commerce Research* 18:3, 485-506. [Crossref]

103. Yanwu Yang, Xin Li, Daniel Zeng, Bernard J. Jansen. 2018. Aggregate effects of advertising decisions. *Internet Research* 28:4, 1079-1102. [Crossref]

105. Fabian Ocker, Karl-Martin Ehrhart, Matej Belica. 2018. Harmonization of the European balancing power auction: A game-theoretical and empirical investigation. *Energy Economics* 73, 194-211. [Crossref]

110. Shayan Eskandari, Andreas Leoutsarakos, Troy Mursch, Jeremy Clark. A First Look at Browser-Based Cryptojacking 58-66. [Crossref]

112. Li Lu, Jiadi Yu, Yanmin Zhu, Minglu Li. 2018. A Double Auction Mechanism to Bridge Users’ Task Requirements and Providers’ Resources in Two-Sided Cloud Markets. *IEEE Transactions on Parallel and Distributed Systems* 29:4, 720-733. [Crossref]

120. Patrick Hummel. 2018. How do selling mechanisms affect profits, surplus, capacity and prices with unknown demand?. *Canadian Journal of Economics/Revue canadienne d’économique* 51:1, 94-126. [Crossref]

121. Tomer Ezra, Michal Feldman, Tim Roughgarden, Warut Suksompong. Pricing Multi-unit Markets. 140-153. [Crossref]

122. Naoki Fukuta. An Analysis of Allocation Stability on Approximation-Based Pricing for Multi-unit Combinatorial Auctions 256-269. [Crossref]

123. Satoshi Takahashi, Tokuro Matsuo. Revenue Improvement Mechanisms Based on Advertisement’s Values and Layouts 270-280. [Crossref]

124. Xiaotie Deng, Keyu Zhu. On Bayesian Epistemology of Myerson Auction 183-196. [Crossref]

125. Anca D. Chirita. The Rise of Big Data and the Loss of Privacy 153-189. [Crossref]

126. Cezary Kaliszyk, Julian Parsert. Formal microeconomic foundations and the first welfare theorem 91-101. [Crossref]

127. Tobias Grubenmann, Abraham Bernstein, Dmitry Moor, Sven Seuken. Financing the Web of Data with Delayed-Answer Auctions 1033-1042. [Crossref]

128. Patrick Hummel, Uri Nadav. Bid-Limited Targeting 1329-1338. [Crossref]

129. Florin Constantin, Christopher Harris, Samuel Ieong, Aranyak Mehta, Xi Tan. Optimizing Ad Refresh In Mobile App Advertising 1399-1408. [Crossref]

130. Weiwei Deng, Xiaoliang Ling, Yang Qi, Tunzi Tan, Eren Manavoglu, Qi Zhang. Ad Click Prediction in Sequence with Long Short-Term Memory Networks 1065-1068. [Crossref]

131. Asia J. Bienga, Krishna P. Gummadi, Gerhard Weikum. Equity of Attention 405-414. [Crossref]

132. Weiwei Deng, Xiaoliang Ling, Yang Qi, Tunzi Tan, Eren Manavoglu, Qi Zhang. Ad Click Prediction in Sequence with Long Short-Term Memory Networks 1065-1068. [Crossref]

133. Di Wu, Xiujuin Chen, Xun Yang, Hao Wang, Qing Tan, Xiaoxun Zhang, Jian Xu, Kun Gai. Budget Constrained Bidding by Model-free Reinforcement Learning in Display Advertising 1443-1451. [Crossref]

134. Junqi Jin, Chengru Song, Han Li, Kun Gai, Jun Wang, Weinan Zhang. Real-Time Bidding with Multi-Agent Reinforcement Learning in Display Advertising 2193-2201. [Crossref]

135. Thanh Nguyen, Karthik Natarajan Kannan. 2018. Welfare Implications in Intermediary Networks. *SSRN Electronic Journal* . [Crossref]

139. Anthony J. Dukes, Qihong Liu, Jie Shuai. 2018. Interactive Advertising: The Case of Skippable Ads. *SSRN Electronic Journal* . [Crossref]

Chen Jin, Luyi Yang, Kartik Hosanagar. 2018. To Brush or Not to Brush: Product Rankings, Customer Search, and Fake Orders. *SSRN Electronic Journal*. [Crossref]

Negin Golrezaei, Vahideh Manshadi, Vahab Mirrokni. 2018. Two-Stage Pandora's Box for Product Ranking. *SSRN Electronic Journal*. [Crossref]

Carsten D. Schultz, Christian Holsing. Differences Across Device Usage in Search Engine Advertising 250-279. [Crossref]

Vineeth S. Varma, Irinel-Constantin Morarescu, Samson Lasaluce, Samuel Martin. Opinion dynamics aware marketing strategies in duopolies 3859-3864. [Crossref]

K. Annapurna, B. Seetha Ramanjaneyulu. Range-bound pricing of channels in multichannel multiuser cognitive radio networks 299-303. [Crossref]

Donghe Li, Qingyu Yang, Wei Yu, Dou An, Xinyu Yang, Wei Zhao. A strategy-proof privacy-preserving double auction mechanism for electrical vehicles demand response in microgrids 1-8. [Crossref]

Xiaomeng Du, Meng Su, Xiaoquan (Michael) Zhang, Xiaona Zheng. 2017. Bidding for Multiple Keywords in Sponsored Search Advertising: Keyword Categories and Match Types. *Information Systems Research* 28:4, 711-722. [Crossref]

Sebastian Stoll, Gregor Zöttl. 2017. Transparency in Buyer-Determined Auctions: Should Quality be Private or Public?. *Production and Operations Management* 26:11, 2006-2032. [Crossref]

Yong Yuan, Fei-Yue Wang, Daniel Zeng. 2017. Competitive Analysis of Bidding Behavior on Sponsored Search Advertising Markets. *IEEE Transactions on Computational Social Systems* 4:3, 179-190. [Crossref]

Hui Liu, Xingquan Zhu, Kristopher Kalish, Jeremy Kayne. ULTR-CTR: Fast Page Grouping Using URL Truncation for Real-Time Click Through Rate Estimation 444-451. [Crossref]
181. Xiang Chen. Towards Global Optimization in Display Advertising by Integrating Multimedia Metrics with Real-Time Bidding 836-845. [Crossref]

182. Narayan Bhamidipati, Ravi Kant, Shaunak Mishra. A Large Scale Prediction Engine for App Install Clicks and Conversions 167-175. [Crossref]

183. Fanqi Shi, Yiqing Xing. 2017. Optimal Ordering in Sequential Auctions with One-Dimensional Types. SSRN Electronic Journal . [Crossref]

184. Jens Prüfer, Christoph Schottmüller. 2017. Competing with Big Data. SSRN Electronic Journal . [Crossref]

187. Abhishek Ray, Hossein Ghasemkhani, Karthik Natarajan Kannan. 2017. Ad-Blockers: Extortionists or Digital Age Robin Hoods?. SSRN Electronic Journal . [Crossref]

188. Charlie Shier, Muhammad Izzar Mehar, Alana Giambattista, Elgar Gong, Gabrielle Fletcher, Ryan Sanayhie, Marek Laskowski, Henry M. Kim. 2017. Understanding a Revolutionary and Flawed Grand Experiment in Blockchain: The DAO Attack. SSRN Electronic Journal . [Crossref]

189. Mohammad Akarpour, Shengwu Li. 2017. Credible Mechanism Design. SSRN Electronic Journal . [Crossref]

190. Francesco Decarolis, Gabriele Rovigatti. 2017. Online Auctions and Digital Marketing Agencies. SSRN Electronic Journal . [Crossref]

192. Siddhartha Sharma, Vibhanshu Abhishek. 2017. Effect of Sponsored Listings on Online Marketplaces: The Role of Information Asymmetry. SSRN Electronic Journal . [Crossref]

193. Olivier Compte, Laurent Lamy, Emmanuel Laurent, Emmanuel Laurent. 2017. Marchés et allotissement : regroupement ou dégroupement ?. Revue économique 68:2, 141. [Crossref]

197. Darja Krushevskaja, William Simpson, S. Muthukrishnan. Ad allocation with secondary metrics 1202-1211. [Crossref]

198. Chen-Kun Tsung, Hannjang Ho, Singling Lee. An Evaluation for Different Pricing Mechanisms under the Sponsored Search with Various Bidding Processes 28-32. [Crossref]

200. Patrick Hummel, R. Preston McAfee. 2016. When Does Improved Targeting Increase Revenue?: ACM Transactions on Economics and Computation 5:1, 1-29. [Crossref]

203. Naoki Iijima, Masashi Hayano, Ayumi Sugiyama, Toshiharu Sugawara. Analysis of task allocation based on social utility and incompatible individual preference 24-31. [Crossref]

205. Jie Zhang, Linjing Li, Fei-Yue Wang. A probabilistic price mechanism design for online auctions 004860-004865. [Crossref]

207. Naoki Fukuta. Toward Fast Approximation of Stable Allocation and Pricing on Combinatorial Auctions 74–77. [Crossref]

209. Xiaotie Deng, Paul W. Goldberg, Bo Tang, Jinshan Zhang. 2016. Multi-Unit Bayesian Auction with Demand or Budget Constraints. *Computational Intelligence* **32**(3), 355-368. [Crossref]

212. Sahar Hoteit, Mahmoud El Chamie, Damien Saucez, Stefano Secci. 2016. On fair network cache allocation to content providers. *Computer Networks* **103**, 129-142. [Crossref]

223. Natalia Kudryashova. 2016. Competition in the web search market: impact of user behaviour. *MERCATI E COMPETITIVITÀ*:1, 145-175. [Crossref]
228. Tian-Ming Bu. Adwords Pricing 24-27. [Crossref]
229. Kengo Saito, Toshiharu Sugawara. Assignment Problem with Preference and an Efficient Solution Method Without Dissatisfaction 33-44. [Crossref]
230. Wei Yuan, Pan Deng, Biying Yan, Jian Wei Zhang, Qingsong Hua, Jing Tan. Incremental Configuration Update Model and Application in Sponsored Search Advertising 70-78. [Crossref]
231. Xiaoping Liu, Xiao-Bai Li. Acquiring High Quality Customer Data with Low Cost 54-65. [Crossref]
233. Denis Charles, Nikhil R. Devanur, Balsubramanian Sivan. Multi-Score Position Auctions 417-425. [Crossref]
234. Miriam Marciel, Rubén Cuevas, Albert Banchs, Roberto González, Stefano Traverso, Mohamed Ahmed, Arturo Azcorra. Understanding the Detection of View Fraud in Video Content Portals 357-368. [Crossref]
235. Tim Roughgarden, Okke Schrijvers. Ironing in the Dark 1-18. [Crossref]
236. Pingzhong Tang, Zihe Wang, Xiaoquan (Michael) Zhang. Optimal Commitments in Asymmetric Auctions with Incomplete Information 197-211. [Crossref]
237. Shuchi Chawla, Jason Hartline, Denis Nekipelov. A/B Testing of Auctions 19-20. [Crossref]
238. Cheng Chen, Sean Chester, Venkatesh Srinivasan, Kui Wu, Alex Thomo. Group-Aware Weighted Bipartite B-Matching 459-468. [Crossref]
244. Hana Choi, Carl F. Mela. 2016. Online Marketplace Advertising. *SSRN Electronic Journal*. [Crossref]

247. Yanwu Yang, Yinghui (Catherine) Yang, Dengpan Liu, Daniel Dajun Zeng. 2016. Dynamic Budget Allocation in Competitive Search Advertising. *SSRN Electronic Journal*. [Crossref]

248. Carsten D. Schultz. An Overview of Search Engine Advertising Research 310-328. [Crossref]

249. Patrick Reid, Des Laffey. Search Engines 1102-1115. [Crossref]

250. Carsten D. Schultz. Do Web Site Visitors Vary in Their Search and Surf Behavior? 1582-1592. [Crossref]

252. Ashish Agarwal, Kartik Hosanagar, Michael D. Smith. 2015. Do Organic Results Help or Hurt Sponsored Search Performance?. *Information Systems Research* 26:4, 695-713. [Crossref]

253. Min Chen, Varghese S. Jacob, Suresh Radhakrishnan, Young U. Ryu. 2015. Can Payment-per-Click Induce Improvements in Click Fraud Identification Technologies?. *Information Systems Research* 26:4, 754-772. [Crossref]

257. Natalia Kudryashova. Strategic games in a competitive market: Feedback from the users’ environment 745-753. [Crossref]

258. Bowei Chen, Jun Wang, Ingemar J. Cox, Mohan S. Kankanhalli. 2015. Multi-Keyword Multi-Click Advertisement Option Contracts for Sponsored Search. *ACM Transactions on Intelligent Systems and Technology* 7:1, 1-29. [Crossref]

261. Nicola Gatti, Alessandro Lazaric, Marco Rocco, Francesco Trovò. 2015. Truthful learning mechanisms for multi-slot sponsored search auctions with externalities. *Artificial Intelligence* 227, 93-139. [Crossref]

262. Vikash Kumar Singh, Sajal Mukhopadhyay, Narayan Debnath, A. Mahesh Chowdary. Auction aware selection of doctors in E-Healthcare 363-368. [Crossref]

268. Xiangzhong Xiang. 2015. Prompt mechanism for online auctions with multi-unit demands. *Journal of Combinatorial Optimization* 30:2, 335-346. [Crossref]

275. Kengo Saito, Toshiharu Sugawara. Single-object resource allocation in multiple bid declaration with preferential order 341-347. [Crossref]

278. Nadia Abou Nabout. 2015. A novel approach for bidding on keywords in newly set-up search advertising campaigns. *European Journal of Marketing* 49:5/6, 668-691. [Crossref]

279. Yupin Yang, Qiang (Steven) Lu, Guanting Tang, Jian Pei. 2015. The Impact of Market Competition on Search Advertising. *Journal of Interactive Marketing* 30, 46-55. [Crossref]

283. Tim Roughgarden. 2015. The Price of Anarchy in Games of Incomplete Information. *ACM Transactions on Economics and Computation* 3:1, 1-20. [Crossref]

284. Qing Cui, Feng-Shan Bai, Bin Gao, Tie-Yan Liu. 2015. Global Optimization for Advertisement Selection in Sponsored Search. *Journal of Computer Science and Technology* 30:2, 295-310. [Crossref]

285. Roberto Burguet, Ramon Caminal, Matthew Ellman. 2015. In Google we trust?. *International Journal of Industrial Organization* 39, 44-55. [Crossref]
286. Ioannis Caragiannis, Christos Kaklamanis, Panagiotis Kanellopoulos, Maria Kyropoulou, Brendan Lucier, Renato Paes Leme, Éva Tardos. 2015. Bounding the inefficiency of outcomes in generalized second price auctions. *Journal of Economic Theory* 156, 343-388. [Crossref]

287. Nikhil R. Devanur, Jason D. Hartline, Qiqi Yan. 2015. Envy freedom and prior-free mechanism design. *Journal of Economic Theory* 156, 103-143. [Crossref]

288. Lawrence Blume, David Easley, Jon Kleinberg, Robert Kleinberg, Éva Tardos. 2015. Introduction to computer science and economic theory. *Journal of Economic Theory* 156, 1-13. [Crossref]

291. Wenjuan Ma, Steven S. Wildman, Hairong Li. Online Advertising 1-8. [Crossref]

292. Anteneh Ayanso, Armin Karimi. 2015. The moderating effects of keyword competition on the determinants of ad position in sponsored search advertising. *Decision Support Systems* 70, 42-59. [Crossref]

293. Tao Qin, Wei Chen, Tie-Yan Liu. 2015. Sponsored Search Auctions. *ACM Transactions on Intelligent Systems and Technology* 5:4, 1-34. [Crossref]

294. Andrey Pepelyshev, Yuri Staroselskiy, Anatoly Zhigljavsky. Adaptive Targeting for Online Advertisement 240-251. [Crossref]

295. Tian-Ming Bu. Adwords Pricing 1-5. [Crossref]

296. Todd R. Kaplan, Shmuel Zamir. Advances in Auctions 381-453. [Crossref]

297. Régis Renault. Advertising in Markets 121-204. [Crossref]

298. Martin Peitz, Markus Reisinger. The Economics of Internet Media 445-530. [Crossref]

299. Patrick Hummel, R. Preston McAfee. When Does Improved Targeting Increase Revenue? 462-472. [Crossref]

300. Olivier Chapelle. Offline Evaluation of Response Prediction in Online Advertising Auctions 919-922. [Crossref]

301. Paul Dütting, Thomas Kesselheim. Algorithms against Anarchy 239-255. [Crossref]

303. Vibhanshu Abhishek, Kartik Hosanagar, Peter S. Fader. 2015. Aggregation Bias in Sponsored Search Data: The Curse and the Cure. *Marketing Science* 34:1, 59-77. [Crossref]

305. Wayne Fu, Wenjuan Ma, Carol Ting, Steven S. Wildman. 2015. Feedback Effects in Search Advertising. *SSRN Electronic Journal*. [Crossref]

310. Longbo Huang. Optimizing your online-advertisement asynchronously 6023-6030. [Crossref]
314. Ahuva Mu’alem. 2014. Fair by design: Multidimensional envy-free mechanisms. *Games and Economic Behavior* 88, 29-46. [Crossref]
316. Miroslav D. Lutovac, Aleksandra M. Lutovac. Vickrey auction game as Mathematica application 1023-1026. [Crossref]
318. Benjamin Lubin, David C. Parkes. Allocating and Pricing Data Center Resources with Power-Aware Combinatorial Auctions 477-500. [Crossref]
321. De Liu, Siva Viswanathan. 2014. Information Asymmetry and Hybrid Advertising. *Journal of Marketing Research* 51:5, 609-624. [Crossref]
322. Rainer Olbrich, Carsten D. Schultz. 2014. Multichannel advertising: does print advertising affect search engine advertising?. *European Journal of Marketing* 48:9/10, 1731-1756. [Crossref]
323. Alan S. Abrahams, Reza Barkhi, Eloise Coupey, Cliff T. Ragsdale, Linda G. Wallace. 2014. Converting browsers into recurring customers: an analysis of the determinants of sponsored search success for monthly subscription services. *Information Technology and Management* 15:3, 177-197. [Crossref]
326. Sungchul Kim, Tao Qin, Tie-Yan Liu, Hwanjo Yu. 2014. Advertiser-centric approach to understand user click behavior in sponsored search. *Information Sciences* 276, 242-254. [Crossref]
329. Ray M. Chang, Robert J. Kauffman, YoungOk Kwon. 2014. Understanding the paradigm shift to computational social science in the presence of big data. *Decision Support Systems* 63, 67-80. [Crossref]

334. Cristina G. Fernandes, Rafael C.S. Schouery. 2014. Second-Price Ad Auctions with Binary Bids and markets with good competition. *Theoretical Computer Science* 540-541, 103-114. [Crossref]

335. Ruti Gafni, Nitza Geri, Yoav Aziz. 2014. Daily Deals Websites: Mostly but not all about Location. *Journal of Computer Information Systems* 54:4, 80-87. [Crossref]

336. Tsung Fu Lin, Yan Ping Chi. Application of Webpage Optimization for Clustering System on Search Engine V Google Study 698-701. [Crossref]

342. Avi Goldfarb. 2014. What is Different About Online Advertising?. *Review of Industrial Organization* 44:2, 115-129. [Crossref]

344. Levent Ülkü. 2014. Implementation in an interdependent value framework. *Mathematical Social Sciences* 68, 64-70. [Crossref]

345. Mark Graham, Ralph Schroeder, Greg Taylor. 2014. Re: Search. *New Media & Society* 16:2, 187-194. [Crossref]

346. William Samuelson. Auctions: Advances in Theory and Practice 323-366. [Crossref]

347. Thomas Goertz, Jella Pfeiffer, Henning Schmidt, Franz Rothlauf. Integrating Keyword Advertising and Dynamic Pricing for an Online Market Place 145-151. [Crossref]

348. Vittorio Bilò, Michele Flammini, Gianpiero Monaco. Approximating the Revenue Maximization Problem with Sharp Demands 74-85. [Crossref]

349. Arash Asadpour, Mohammad Hossein Bateni, Kshipra Bhawalkar, Vahab Mirrokni. Concise Bid Optimization Strategies with Multiple Budget Constraints 263-276. [Crossref]

350. Ruggiero Cavallo, Christopher A. Wilkens. GSP with General Independent Click-through-Rates 400-416. [Crossref]
351. Patrick Hummel, R. Preston McAfee. Position Auctions with Externalities 417-422. [Crossref]
352. Tobias Blask. Investigating the Promotional Effect of Green Signals in Sponsored Search Advertising Using Bayesian Parameter Estimation 25-37. [Crossref]
355. Mukund Sundararajan, Inbal Talgam-Cohen. Prediction and Welfare in Ad Auctions 267-278. [Crossref]
356. M. Bumin Yenmez. 2014. Pricing in position auctions and online advertising. Economic Theory 55:1, 243-256. [Crossref]
357. Yanwu Yang, Fei-Yue Wang. Budget Constraints in Sponsored Search Auctions 13-29. [Crossref]
358. Yanwu Yang, Fei-Yue Wang. Budget Allocation In Competitive Search Advertisements, Part I: In Static Environments 91-101. [Crossref]
359. F. Nottorf. 2014. Modeling the clickstream across multiple online advertising channels using a binary logit with Bayesian mixture of normals. Electronic Commerce Research and Applications 13:1, 45-55. [Crossref]
360. Kai Li, Mei Lin, Zhangxi Lin, Bo Xing. Running and Chasing -- The Competition between Paid Search Marketing and Search Engine Optimization 3110-3119. [Crossref]
362. Natalia Kudryashova. The market of internet sponsored links in the context of competition law 331-332. [Crossref]
364. Vibhanshu Abhishek, Jing Gong, Beibei Li. 2014. Examining the Impact of Contextual Ambiguity on Search Advertising Keyword Performance: A Topic Model Approach. SSRN Electronic Journal . [Crossref]
365. Todd R. Kaplan, Shmuel Zamir. 2014. Advances in Auctions. SSRN Electronic Journal . [Crossref]
367. Roberto Burguet, Ramon Caminal, Matthew Ellman. 2014. In Google We Trust?. SSRN Electronic Journal . [Crossref]
368. Jing Fang. 2014. Targeted Advertising Based on Social Network Analysis. Applied Mechanics and Materials 488-489, 1306-1309. [Crossref]

375. Mark Graham, Ralph Schroeder, Greg Taylor. 2013. Re: Search. New Media & Society 15:8, 1366-1373. [Crossref]

378. Wei Lai, Li Chen. Keyword bid ranking system on the search engine business value impact 439-443. [Crossref]

380. Wafa Ghonaim, Hamada Ghenniwa, Weiming Shen. Towards a Rule-Based Bidding Language: Promoting the Free Expression of Rational Conduct for Ecosystem Friendly E-Markets 4688-4693. [Crossref]

381. De Liu, Siva Viswanathan. 2013. Information Asymmetry and Hybrid Advertising. Journal of Marketing Research 50:5, 609-624. [Crossref]

382. Emiko Fukuda, Yoshio Kamijo, Ai Takeuchi, Michiharu Masui, Yukihiko Funaki. 2013. Theoretical and experimental investigations of the performance of keyword auction mechanisms. The RAND Journal of Economics 44:3, 438-461. [Crossref]

384. Meng Wang, Zhide Chen, Li Xu, Lei Shao. Optimal mobile App advertising keyword auction model with variable costs 166-171. [Crossref]

388. Wei Yang, Youyi Feng, Baichun Xiao. Optimal reserve price in dynamic sponsored search auction 647-652. [Crossref]

389. Richard E. Chatwin. An overview of computational challenges in online advertising 5990-6007. [Crossref]

390. Wafa Ghonaim, Hamada Ghenniwa, Weiming Shen. A GSP double auction for smart exchange 621-626. [Crossref]

391. Kil-Soo Suh, Izak Benbasat, Eung-Kyo Suh. 2013. The Impact of Listing Location on Visits, Bids, and Final Prices in Online Auctions: A Field Experiment. International Journal of Electronic Commerce 17:3, 87-108. [Crossref]

395. Zhenjie Zhang, R. T. B. Ma, Jianbing Ding, Yin Yang. ABACUS: An Auction-Based Approach to Cloud Service Differentiation 292–301. [Crossref]
404. ChenKun Tsung, HannJang Ho, SingLing Lee. Analysis of Stable Prices in Non-Decreasing Sponsored Search Auction 102–114. [Crossref]
405. Stefano Ceri, Alessandro Bozzon, Marco Brambilla, Emanuele Della Valle, Piero Fraternali, Silvia Quarteroni. Advertising in Search 121–133. [Crossref]
406. Nevena Vratonjic, Mohammad Hossein Manshaei, Jens Grossklags, Jean-Pierre Hubaux. Ad-Blocking Games: Monetizing Online Content Under the Threat of Ad Avoidance 49–73. [Crossref]
407. Carsten D. Schultz. Ranking for the Top: A Misconception of Search Engine Advertisers 15–25. [Crossref]
408. George Trimponias, Ilaria Bartolini, Dimitris Papadias. Location-Based Sponsored Search Advertising 348–366. [Crossref]
409. Lampros C. Stavrogiannis, Enrico H. Gerding, Maria Polukarov. Competing Intermediaries in Online Display Advertising 146–159. [Crossref]
410. Xiaotie Deng, Paul Goldberg, Yang Sun, Bo Tang, Jinshan Zhang. Pricing Ad Slots with Consecutive Multi-unit Demand 255–266. [Crossref]
411. Yuko Sakurai, Tenda Okimoto, Masaaki Oka, Makoto Yokoo. Strategy-Proof Mechanisms for the k-Winner Selection Problem 292–307. [Crossref]
412. Yang Cai, Mohammad Mahdian, Aranyak Mehta, Bo Waggoner. Designing Markets for Daily Deals 82–95. [Crossref]
413. Michael R. Baye, John Morgan. Pricing on the Internet 1–10. [Crossref]
414. Hal R. Varian. Google 1–6. [Crossref]

416. Ilya Trofimov. New features for query dependent sponsored search click prediction 117-118. [Crossref]

417. Abhirup Nath, Shibnath Mukherjee, Prateek Jain, Navin Goyal, Srivatsan Laxman. Ad impression forecasting for sponsored search 943-952. [Crossref]

418. Eric Sodomka, Sébastien Lahaie, Dustin Hillard. A predictive model for advertiser value-per-click in sponsored search 1179-1190. [Crossref]

419. Haifeng Xu, Bin Gao, Diyi Yang, Tie-Yan Liu. Predicting advertiser bidding behaviors in sponsored search by rationality modeling 1433-1444. [Crossref]

421. Ying-Ju Chen. 2013. Optimal Dynamic Auctions for Display Advertising. SSRN Electronic Journal . [Crossref]

422. Aditya Bhave, Eric B. Budish. 2013. Primary-Market Auctions for Event Tickets: Eliminating the Rents of ’Bob the Broker’. SSRN Electronic Journal . [Crossref]

424. Stefan Bechtold, Catherine Tucker. 2013. Trademarks, Triggers, and Online Search. SSRN Electronic Journal . [Crossref]

427. Qingmin Liu, George J. Mailath, Andrew Postlewaite, Larry Samuelson. 2013. Stable Matching with Incomplete Information. SSRN Electronic Journal . [Crossref]

429. Sami Najafi Asadolahi, Kristin Fridgeirsdottir. 2013. Cost-Per-Click Pricing for Display Advertising. SSRN Electronic Journal . [Crossref]

430. Hoan Soo Lee. 2013. Consumer Search Pattern and Welfare Analysis in Internet Advertising. SSRN Electronic Journal . [Crossref]

434. Esther David, Rina Azulay. No More Damaging Ads on Your Own Webpage -- Strategy Proof Mechanisms for Ad Placement 140-145. [Crossref]

436. Yong Yuan, Daniel Zeng. 2012. Co-evolution-based mechanism design for sponsored search advertising. Electronic Commerce Research and Applications 11:6, 537-547. [Crossref]

442. Anwar Mohammadi, Nathan Fisher, Daniel Grosu. Real-Time Competitive Environments: Truthful Mechanisms for Allocating a Single Processor to Sporadic Tasks 199–208. [Crossref]

443. Chen Kun Tsung, Hann Jang Ho, Sing Ling Lee, Wei Lun Chen. The Influence of Vindictive Bidders in Non-decreasing Sponsored Search Auction 32–35. [Crossref]

446. Yuan Quan, Ding-wei Wang. Keywords tender price selected in the generalized second price position auction 816–820. [Crossref]

452. JUAN APARICIO, NATIVIDAD LLORCA, JOAQUIN SANCHEZ-SORIANO, MANUEL A. PULIDO, JULIA SANCHO. 2012. RANKING AUCTIONS: A COOPERATIVE APPROACH. *International Game Theory Review* **14**:01, 1250003. [Crossref]

454. Satoshi Takahashi, Yuji Hashiura, Roger Y. Lee, Tokuro Matsuo. A Winner Determination Method on GlobalAd Service: Model and Formulation 67–76. [Crossref]
479. Yih-Farn Chen, R. Jana, K. N. Kannan. Using Generalized Second Price Auction for Congestion Pricing 1-6. [Crossref]

481. Krishnamurthy Iyer, Ramesh Johari, Mukund Sundararajan. 2011. Mean field equilibria of dynamic auctions with learning. ACM SIGecom Exchanges 10:3, 10-14. [Crossref]

489. E. Zhang, Zhuo Yi-qin. Online advertising channel choice Posted price vs. auction 321-328. [Crossref]

490. Yan Li, Songtao Liang, Tao Zhang. Pricing Scheme for Limiting Strategic Bidding on Sponsored Search Auction 1-4. [Crossref]

494. Naoko Nishimura, Timothy N. Cason, Tatsuyoshi Saijo, Yoshikazu Ikeda. 2011. Spite and Reciprocity in Auctions. Games 2:3, 365-411. [Crossref]

496. Stamatina Thomaidou, Michalis Vazirgiannis. Multiword Keyword Recommendation System for Online Advertising 423-427. [Crossref]

497. Patrick Maille, Bruno Tuffin. Sponsored Search Engines in Competition: Advertisers Behavior and Engines Optimal Ranking Strategies 96-103. [Crossref]

501. Satoshi Takahashi, Tokuro Matsuo. An Effectiveness Analysis of Value-Based Mechanism in the Internet Advertisement Auction 411–416. [Crossref]

504. Chen-Kun Tsung, Hann-Jang Ho, Sing-Ling Lee. Repeated sponsored search auction with non-decreasing bid values 4300-4303. [Crossref]

505. Patrick Maillé, Bruno Tuffin. On the Ranking Strategy in Adword Auctions 90-93. [Crossref]

506. PAUL MILGROM. 2011. CRITICAL ISSUES IN THE PRACTICE OF MARKET DESIGN. *Economic Inquiry* **49**:2, 311-320. [Crossref]

509. Maurizio Naldi, Antonio Pavignani, Antonio Grillo, Alessandro Lentini, Giuseppe F. Italiano. A Model for the Dynamics of Bidders in the Simulation of Keyword Auctions 440-445. [Crossref]

514. Bing Liu, Bamshad Mobasher, Olfa Nasraoui. Web Usage Mining 527–603. [Crossref]

515. Yosuke Motoki, Satoshi Takahashi, Yoshihito Saito, Tokuro Matsuo. Effects of Value-Based Mechanism in Online Advertisement Auction 179-189. [Crossref]

516. Christof Weinhardt, Benjamin Blau, Tobias Conte, Lilia Filipova-Neumann, Thomas Meinl, Wibke Michalk. Coordination and Pricing in Service Value Networks: A Mechanism Design Approach 129-170. [Crossref]

517. Christof Weinhardt, Benjamin Blau, Tobias Conte, Lilia Filipova-Neumann, Thomas Meinl, Wibke Michalk. Web Services Advanced Reservation Contracts 171-190. [Crossref]

518. Dimitris Fotakis, Piotr Krysta, Orestis Telelis. Externalities among Advertisers in Sponsored Search 105-116. [Crossref]

519. Ning Chen, Xiaotie Deng. Computation and Incentives of Competitive Equilibria in a Matching Market 2-6. [Crossref]

520. Patrick Jordan, Mohammad Mahdian, Sergei Vassilvitskii, Erik Vee. The Multiple Attribution Problem in Pay-Per-Conversion Advertising 31-43. [Crossref]

521. Quang Duong, Sébastien Lahaie. Discrete Choice Models of Bidder Behavior in Sponsored Search 134–145. [Crossref]

548. Renato Paes Leme, Eva Tardos. Pure and Bayes-Nash Price of Anarchy for Generalized Second Price Auction 735-744. [Crossref]

549. Ilya Gluhovsky. 2010. Forecasting Click-Through Rates Based on Sponsored Search Advertiser Bids and Intermediate Variable Regression. *ACM Transactions on Internet Technology* 10:3, 1-28. [Crossref]

551. Li Ji, Pan Rui, Wang Hansheng. 2010. Selection of Best Keywords. *Journal of Interactive Advertising* 11:1, 27-35. [Crossref]

552. Gabrielle Demange, Xiaotie Deng. 2010. Universally Balanced Combinatorial Optimization Games. *Games* 1:3, 299-316. [Crossref]

554. . Bibliography 424-461. [Crossref]

555. Haiying Ou, Tingjie Lv. Sponsored search theory: How is it going? 165-168. [Crossref]

556. Michael Munsey, Jonathan Veilleux, Sindhura Bikkani, Ankur Teredesai, Martine De Cock. Born to trade: A genetically evolved keyword bidder for sponsored search 1-8. [Crossref]

557. Linjing Li, Daniel Zeng. Refinement of symmetrical Nash equilibrium for generalized second-price mechanism in sponsored search advertising 457-462. [Crossref]

562. Hal R. Varian. 2010. Computer Mediated Transactions. *American Economic Review* 100:2, 1-10. [Citation] [View PDF article] [PDF with links]

564. Jonathan Levin,, Paul Milgrom. 2010. Online Advertising: Heterogeneity and Conflation in Market Design. *American Economic Review* 100:2, 603-607. [Citation] [View PDF article] [PDF with links]

566. Aytek Erdil, Paul Klemperer. 2010. A NEW PAYMENT RULE FOR CORE-SELECTING PACKAGE AUCTIONS. *Journal of the European Economic Association* 8:2-3, 537-547. [Crossref]

571. E. Zhang, Yiqin Zhuo. Pricing and Bidding Strategy in AdWords Auction under Heterogeneous Products Scenario 116-123. [Crossref]

572. Xiaotie Deng, Yang Sun, Ming Yin, Yunhong Zhou. Mechanism Design for Multi-slot Ads Auction in Sponsored Search Markets 11-22. [Crossref]

573. Patrick R. Jordan, Michael P. Wellman. Designing an Ad Auctions Game for the Trading Agent Competition 147-162. [Crossref]

574. Michele Budinich, Bruno Codenotti, Filippo Geraci, Marco Pellegrini. On the Benefits of Keyword Spreading in Sponsored Auctions: An Experimental Analysis 158-171. [Crossref]

575. Patrick Maillé, Bruno Tuffin. On the Interest of Introducing Randomness in Ad-Word Auctions 229-240. [Crossref]

576. Bharat Adsul, Ch. Sobhan Babu, Jugal Garg, Ruta Mehta, Milind Sohoni. Nash Equilibria in Fisher Market 30-41. [Crossref]

577. Sai-Ming Li, Mohammad Mahdian, R. Preston McAfee. Value of Learning in Sponsored Search Auctions 294-305. [Crossref]

578. Ian A. Kash, David C. Parkes. Impersonation Strategies in Auctions 492-495. [Crossref]

579. Evangelos Markakis, Orestis Telelis. Discrete Strategies in Keyword Auctions and Their Inefficiency for Locally Aware Bidders 523-530. [Crossref]

580. . Bibliography 305-313. [Crossref]

583. Yu Hu, Jiwoong Shin, Zhulei Tang. Pricing of Online Advertising: Cost-Per-Click-Through Vs. Cost-Per-Action 1-9. [Crossref]

613. Scott Duke Kominers. Dynamic Position Auctions with Consumer Search 240-250. [Crossref]
614. Yossi Azar, Benjamin Birnbaum, Anna R. Karlin, C. Thach Nguyen. On Revenue Maximization in Second-Price Ad Auctions 155-166. [Crossref]
615. Mohammad Mahdian, Grant Wang. Clustering-Based Bidding Languages for Sponsored Search 167-178. [Crossref]
616. S. Muthukrishnan. Ad Exchanges: Research Issues 1-12. [Crossref]
617. Renato Gomes, Nicole Immorlica, Evangelos Markakis. Externalities in Keyword Auctions: An Empirical and Theoretical Assessment 172-183. [Crossref]
618. Sharad Goel, Sébastien Lahaie, Sergei Vassilvitskii. Contract Auctions for Sponsored Search 196-207. [Crossref]
619. Paul Dütting, Monika Henzinger, Ingmar Weber. Bidder Optimal Assignments for General Utilities 575-582. [Crossref]
620. Xiaotie Deng, Jiajin Yu. A New Ranking Scheme of the GSP Mechanism with Markovian Users 583-590. [Crossref]
621. Randolph E. Bucklin, Oliver J. Rutz, Michael Trusov. Metrics for the New Internet Marketing Communications Mix 175-192. [Crossref]
622. Yuko Sakurai, Makoto Yokoo, Atsushi Iwasaki, Koutarou Suzuki. Secure Keyword Auction: Preserving Privacy of Bidding Prices and CTRs 419-422. [Crossref]
623. Somanchi Sriram, Nittala Chaitanya, Yadati Narahari. A Novel Bid Optimizer for Sponsored Search Auctions Using Cooperative Game Theory 435-438. [Crossref]
624. Rufus Pollock. 2009. Is Google the Next Microsoft? Competition, Welfare and Regulation in Internet Search. SSRN Electronic Journal. [Crossref]
625. E. Glen Weyl, Michal Fabinger. 2009. Pass-Through as an Economic Tool. SSRN Electronic Journal. [Crossref]
626. Joshua S. Gans, Scott Stern. 2009. Is There a Market for Ideas?. SSRN Electronic Journal. [Crossref]
633. Sha Yang, Anindya Ghose. 2009. Analyzing the Relationship between Organic and Sponsored Search Advertising: Positive, Negative or Zero Interdependence?. SSRN Electronic Journal. [Crossref]
635. Dirk Bergemann, Juuso Valimaki. 2009. The Dynamic Pivot Mechanism. SSRN Electronic Journal. [Crossref]

637. Michael Ostrovsky, Michael Schwarz. 2009. Reserve Prices in Internet Advertising Auctions: A Field Experiment. SSRN Electronic Journal . [Crossref]

640. Yuko Sakurai, Atsushi Iwasaki, Makoto Yokoo. Keyword Auction Protocol for Dynamically Adjusting the Number of Advertisements 410-416. [Crossref]

643. Gagan Aggarwal, S. Muthukrishnan. Theory of Sponsored Search Auctions 7-7. [Crossref]

644. Honglei Yu, Deli Yang, Huifen Li. A hybrid pricing mechanism for solving the click fraud problem in AdWords auctions 722-726. [Crossref]

645. Ramakrishnan Kannan, Dinesh Garg, Karthik Subbian, Y. Narahari. A Nash bargaining approach to retention enhancing bid optimization in sponsored search auctions with discrete bids 1007-1012. [Crossref]

646. David J. Martin, Johannes Gehrke, Joseph Y. Halpern. Toward Expressive and Scalable Sponsored Search Auctions 237-246. [Crossref]

648. Randolph E. Bucklin. Marketing Models for Electronic Commerce 327-369. [Crossref]

649. Yiling Chen, Arpita Ghosh, Randolph Preston McAfee, David Pennock. Sharing Online Advertising Revenue with Consumers 556-565. [Crossref]

650. Eyal Even-Dar, Jon Feldman, Yishay Mansour, S. Muthukrishnan. Position Auctions with Bidder-Specific Minimum Prices 577-584. [Crossref]

651. David Kempe, Mohammad Mahdian. A Cascade Model for Externalities in Sponsored Search 585-596. [Crossref]

652. Rica Gonen, Sergei Vassilvitskii. Sponsored Search Auctions with Reserve Prices: Going Beyond Separability 597-608. [Crossref]

655. Kenneth C. Wilbur, Yi Zhu. 2008. Click Fraud. SSRN Electronic Journal . [Crossref]

665. Sudhir Kumar Singh, Vwani P. Roychowdhury, Himawan Gunadhi, Behnam A. Rezaei. Capacity Constraints and the Inevitability of Mediators in Adword Auctions 318-325. [Crossref]

666. Zoë Abrams, Michael Schwarz. Ad Auction Design and User Experience 529-534. [Crossref]

667. Zoë Abrams, Erik Vee. Personalized Ad Delivery When Ads Fatigue: An Approximation Algorithm 535-540. [Crossref]

670. Tian-Ming Bu, Xiaotie Deng, Qi Qi. Multi-bidding Strategy in Sponsored Keyword Auction 124-134. [Crossref]

671. Rica Gonen. On the Hardness of Truthful Online Auctions with Multidimensional Constraints 221-230. [Crossref]

672. Jennifer Wortman, Yevgeniy Vorobeychik, Lihong Li, John Langford. Maintaining Equilibria During Exploration in Sponsored Search Auctions 119-130. [Crossref]

673. Zoë Abrams, Arpita Ghosh. Auctions with Revenue Guarantees for Sponsored Search 143-154. [Crossref]

674. Yevgeniy Vorobeychik, Daniel M. Reeves. Equilibrium Analysis of Dynamic Bidding in Sponsored Search Auctions 155-166. [Crossref]

675. Eyal Even-Dar, Michael Kearns, Jennifer Wortman. Sponsored Search with Contexts 312-317. [Crossref]