Economics 703
Advanced Microeconomics
Prof. Peter Cramton

Problem Set 3

1. In Rubinstein's bargaining model, the time between offers is arbitrary. Let it be \(t > 0 \), and let player \(i \)'s impatience be measured by \(\Delta_i > 0 \), where \(\delta_i = e^{-\Delta_i t} \). What happens to the equilibrium payoffs as \(t \) goes to zero?

2. This problem considers cartel maintenance over the business cycle by varying the parameter \(a \), the intercept in Porter's linear demand curve. Following Proposition 3.2, Porter shows that

\[
\frac{dq^*}{da} = \frac{2N + 1 + \eta^*}{2NB(N + 1 + \eta^*)},
\]

where \(q^* \) is the quantity produced by each firm under the optimal trigger-price strategy. In contrast,

\[
\frac{dr}{da} = \frac{1}{2NB},
\]

where \(r \) is the quantity produced by each firm under maximal symmetric collusion. [Both of these assume \(\mu = 1 \).] Recall from Proposition 3.4 that \(q^* > r \), so \(q^* - r \) is a measure of firms' (in)ability to collude. What happens to this measure during a boom (i.e., if \(a \) increases), and why?

3. Consider the both-pay auction discussed in class. A prize of $10 is auctioned to the highest of two bidders. The players alternate bidding. At each stage, the bidding player must decide either to raise the bid by $1 or to quit. The game ends when one of the two bidders quits in which case the other bidder gets the $10 prize, and both bidders pay the auctioneer their most recent bids. The first player begins with an initial bid of $1 (unless she decides to quit immediately, with the result that the $10 prize goes to player 2 and both pay nothing to the auctioneer). If both players play the raise-forever strategy, then there payoffs are \((-\infty, -\infty)\).

(a) What are the two pure-strategy equilibria?

(b) Consider the following mixed-strategy equilibrium. Player 1 bids $1 for sure and then each player quits with a constant probability in every subsequent round (i.e., player 2 quits with probability \(q \) and bids $2 with probability \(1 - q \); if player 2 raised to $2, player 1 quits with probability \(p \) and raises to $3 with probability \(1 - p \); etc.). For what values of \(p \) and \(q \) is this a subgame-perfect equilibrium? [Hint: A player must be indifferent among the pure strategies he is randomizing over.]

(c) In the equilibrium in (b), what is the most that player 1 would be willing to pay for the right to make the first bid?

(d) Are there any other equilibria, besides those found in (a) and (b)?