Practical Auction Design

Peter Cramton
Introduction

• Auction design
 – Government perspective (design)
 – Bidder perspective (strategy)

• Based on my experience
 – Researching auctions
 – Advising governments (a dozen)
 – Advising bidders (more than two dozen)
Advising bidders
Advising bidders: Typical project

- Comment on auction design (regulatory)
- First strategy meeting
 - Objectives
 - Strategic issues
- Develop bid tracking tool
- Second strategy meeting
 - Development of strategy
 - Several mock auctions
- Daily auction advice during auction
 - Comment on auction strategy and end-of-day report
Fundamental strategic issues
Fundamental strategic issues

- Winner’s curse
- Demand reduction
- Exposure problem
- Asymmetries
- Collusion
- Complexity
Auctioning a single good

Auctions typically take one of four simple forms:

<table>
<thead>
<tr>
<th>Dynamic</th>
<th>Sealed Bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>English (↑ price)</td>
<td>2nd Price</td>
</tr>
<tr>
<td>Dutch (↓ price)</td>
<td>1st Price</td>
</tr>
</tbody>
</table>
Auction exercise

• Bid for single object
• Common value = $1 per bean
• On slip of paper write:
 – Name
 – Estimate (# of beans × $1)
 – Bid in first-price sealed-bid auction
 – Bid in second-price sealed-bid auction
Winner’s curse
Winner's curse

I won. Therefore, I overestimated the most. My bid only matters when I win, so I should condition my bid on winning (i.e., that I overestimated the most).

• Winning is bad news about my estimate of value. No one else was willing to bid as much.
Auction design pitfalls

• Auction design can force bidders to make guesses
 – In a simultaneous *sealed-bid* auction bidders must guess about the bids of others
 – In sequential auctions bidders must guess about future prices

• Bidder uncertainty
 – Increases likelihood of inefficient or low-value assignments
 – Can often be reduced
 – Makes bidding difficult, undermines confidence, and can lead to defaults
Exercise

• 2 bidders (L and R), 2 identical items
• L has a value of $100 for 1 and $200 for both
• R has a value of $90 for 1 and $180 for both
• Uniform-price auction
 – Submit bid for each item
 – Highest 2 bids get items
 – 3rd highest bid determines price paid
• Ascending clock auction
 – Price starts at 0 and increases in small increments
 – Bidders express how many they want at current price
 – Bidders can only lower quantity as price rises
 – Auction ends when no excess demand (i.e. just two demanded); winners pay clock price
Demand reduction
Inefficiency theorem

In any equilibrium of uniform-price auction, with positive probability objects are won by bidders other than those with highest values.

- Winning bidder influences price with positive probability
- Creates incentive to shade bid
- Incentive to shade increases with additional units
- Differential shading implies inefficiency
Inefficiency theorem and bid shading

• Exceptions:
 – Pure common value
 – Bidders demand only a single unit
Inefficiency from differential shading

Large bidder makes room for smaller rival
What if private information?

- 2 bidders (L and S), 2 identical items
- L has constant marginal value u drawn U[0,1]
- S has constant marginal value v drawn U[0,1]
- Uniform-price auction
 - Submit bid for each item
 - Highest 2 bids get items
 - 3rd highest bid determines price paid
- Ascending clock auction
 - Price starts at 0 and increases in small increments
 - Bidders express how many they want at current price
 - Bidders can only lower quantity as price rises
 - Auction ends when no excess demand (i.e. just two demanded); winners pay clock price
Exercise

• Two bidders (L & R), two items (A & B)
 – L need both (value = 2 times birth month)
 – R needs one (value = birth month)
 – Simultaneous ascending auction
Exposure problem
Exposure problem

• With complements, bidding on individual lots is risky
 – Bidder must “go for it” or drop out early
 – Outcome is often inefficient
 – Experiments sometimes get high revenues

• Exposure problem eliminated with package bids
Exposure problem exercise: Optimal strategy in SAA

<table>
<thead>
<tr>
<th>L's Profit</th>
<th>-12</th>
<th>-10</th>
<th>-8</th>
<th>-6</th>
<th>-4</th>
<th>-2</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>L's value</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>L's birth month</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Bidder R's birth month</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>Expected Cost</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Cost to eliminate bidder R

Expected Cost
Exercise

• Two bidders bidding for sum of cash in wallets
• Auction cash prize to two bidders equal to sum of money in both:
 \[t_i = \text{money in student i’s wallet} \]
 \[v = t_1 + t_2 \]
• Ascending clock auction
Asymmetries
Wallet Game

• Symmetric equilibrium?
• Asymmetric equilibrium?
• What if bidder 1 has a small advantage?
 – Bidder 1 gets a $1 bonus if wins
Incumbency advantage

• Toe hold
 – UK 3G auction
 – US PCS auction (Los Angeles and PacTel)
Incumbency disadvantage

• Hold up
 – Vodafone and BT in UK 3G auction
 – Cingular and Verizon in US PCS auction
Collusion
Anti-Collusion

• Can’t talk about bidding strategy with another bidder between application and end of auction
• Immediately report to Regulator any inappropriate communication made by another
Explicit collusion
Tacit collusion
Complexity
Auction complexity vs. strategic complexity
Objectives
Government goals

- Competition in post-auction market
- Efficiency
- Revenue
Bidder preferences
Bidder preferences

- Substitutes
- Complements
- Heterogeneity
- Externalities
Simultaneous ascending auction
Auction rules

- **Simultaneous**
 - All lots at the same time

- **Ascending**
 - Can raise bid on any lot

- **Stopping rule**
 - All lots open until no bids on any lot

- **Activity rule**
 - Must be activity to maintain eligibility
Strategy in SAA
Strategy in SAA

- Translating valuations into strategy
- Auction as a negotiation
- Elements of a good strategy
- Retaliation
- Managing eligibility
- Auction opening
- Stage transitions
- Auction closing
Auction as a Negotiation

- Learn what competitors need
- Learn how costly it is to ask for more
- Ask for more at the right time in the right place
- Manage eligibility
Elements of a Good Strategy

• Conservative (don’t leave money on table)
• Flexible (responsive to others)
• Clear
• Nice, but firm
 – Begin with a cooperative position
 – “Quick to punish, quick to forgive”
Retaliation
Retaliatory Bidding

• Stake a claim
 – Bid early on licenses of primary interest
 – Consistently retake license whenever bumped

• Punish intruders
 – Punish by bumping intruder from a license it holds
 – Works well against rivals with primary interests that overlap with your secondary interests
Example of Code Bidding

<table>
<thead>
<tr>
<th>Round</th>
<th>Marshalltown, IA</th>
<th>Rochester, MN</th>
<th>Waterloo, IA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>283 E</td>
<td>378 D</td>
<td>452 E</td>
</tr>
<tr>
<td>24</td>
<td>McLeod</td>
<td>USWest</td>
<td>AT&T</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>287,000</td>
</tr>
<tr>
<td>46</td>
<td>56,000</td>
<td></td>
<td>568,000</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td>689,000</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td>723,000</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>795,000</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
<td>875,000</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td>313,378</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td>345,000</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>62,378</td>
<td>1,059,000</td>
</tr>
<tr>
<td>65</td>
<td>69,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td>371,000</td>
</tr>
</tbody>
</table>
Critical times
Critical times

- Auction opening
- Stage transitions
- Auction closing
Bidder
decision making
Bidder decision making

- Valuation model
- Competitor analysis
- Bid tracking tool
- Residual supply
- Communication with investors
- Deviations from rational bidding
Valuation model

• Typically complex spreadsheet, calculating cost and revenues over 10 year horizon (NPV)

• Most sophisticated models reconfigure network in response to extra spectrum
Bid tracking tool
Bid tracking tool

- Import round (download results)
- Market analysis
- Bidder analysis
- Bid form (upload bids)
- Map
- Rounds summary
- Market pivot table
- Bidder pivot table
Round results

<table>
<thead>
<tr>
<th>R</th>
<th>Minimum bid</th>
<th>Must bid</th>
<th>Tim</th>
<th>Omnitel</th>
<th>Blu</th>
<th>Wind</th>
<th>Ipse</th>
<th>Andala</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>400</td>
<td>Andala</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>400</td>
<td>400</td>
<td>423</td>
<td>421</td>
<td>422</td>
<td>400</td>
<td>420</td>
</tr>
<tr>
<td>2</td>
<td>420</td>
<td>Blu</td>
<td>422</td>
<td>425</td>
<td>421</td>
<td>422</td>
<td>422</td>
<td>420</td>
</tr>
<tr>
<td>3</td>
<td>420</td>
<td>Tim</td>
<td>422</td>
<td>425</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>420</td>
</tr>
<tr>
<td>4</td>
<td>443</td>
<td>Andala</td>
<td>422</td>
<td>425</td>
<td>444</td>
<td>422</td>
<td>422</td>
<td>443</td>
</tr>
<tr>
<td>5</td>
<td>443</td>
<td>Blu</td>
<td>422</td>
<td>425</td>
<td>444</td>
<td>422</td>
<td>422</td>
<td>443</td>
</tr>
<tr>
<td>6</td>
<td>443</td>
<td>Ipse</td>
<td>422</td>
<td>425</td>
<td>444</td>
<td>422</td>
<td>445</td>
<td>443</td>
</tr>
<tr>
<td>7</td>
<td>444</td>
<td>Tim</td>
<td>444</td>
<td>448</td>
<td>449</td>
<td>447</td>
<td>445</td>
<td>446</td>
</tr>
<tr>
<td>8</td>
<td>468</td>
<td>Tim</td>
<td>468</td>
<td>448</td>
<td>449</td>
<td>447</td>
<td>468</td>
<td>446</td>
</tr>
<tr>
<td>9</td>
<td>470</td>
<td>Andala</td>
<td>468</td>
<td>448</td>
<td>449</td>
<td>470</td>
<td>468</td>
<td>470</td>
</tr>
<tr>
<td>10</td>
<td>472</td>
<td>Omnitel</td>
<td>468</td>
<td>474</td>
<td>449</td>
<td>470</td>
<td>473</td>
<td>470</td>
</tr>
<tr>
<td>11</td>
<td>492</td>
<td>Blu</td>
<td>468</td>
<td>449</td>
<td>470</td>
<td>473</td>
<td>470</td>
<td>470</td>
</tr>
</tbody>
</table>

Ranking

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ipse 400</td>
<td>Omnitel 400</td>
<td>Tim 400</td>
<td>Blu 400</td>
<td>Wind 400</td>
<td>Andala 400</td>
</tr>
<tr>
<td>Andala 420</td>
<td>Wind 420</td>
<td>Ipse 400</td>
<td>Omnitel 400</td>
<td>Tim 400</td>
<td>Blu 400</td>
</tr>
<tr>
<td>Omnitel 423</td>
<td>Wind 422</td>
<td>Blu 421</td>
<td>Andala 420</td>
<td>Ipse 400</td>
<td>Tim 400</td>
</tr>
<tr>
<td>Omnitel 425</td>
<td>Wind 422</td>
<td>Tim 422</td>
<td>Ipse 422</td>
<td>Blu 421</td>
<td>Andala 420</td>
</tr>
<tr>
<td>Andala 443</td>
<td>Omnitel 425</td>
<td>Wind 422</td>
<td>Tim 422</td>
<td>Ipse 422</td>
<td>Blu 421</td>
</tr>
<tr>
<td>Blu 444</td>
<td>Andala 443</td>
<td>Omnitel 425</td>
<td>Wind 422</td>
<td>Tim 422</td>
<td>Ipse 422</td>
</tr>
<tr>
<td>Ipse 445</td>
<td>Blu 444</td>
<td>Andala 443</td>
<td>Omnitel 425</td>
<td>Wind 422</td>
<td>Tim 422</td>
</tr>
<tr>
<td>Blu 449</td>
<td>Omnitel 448</td>
<td>Wind 447</td>
<td>Andala 446</td>
<td>Ipse 445</td>
<td>Tim 444</td>
</tr>
<tr>
<td>Tim 468</td>
<td>Ipse 468</td>
<td>Blu 449</td>
<td>Omnitel 448</td>
<td>Wind 447</td>
<td>Andala 446</td>
</tr>
<tr>
<td>Wind 470</td>
<td>Andala 470</td>
<td>Tim 468</td>
<td>Ipse 468</td>
<td>Blu 449</td>
<td>Omnitel 448</td>
</tr>
<tr>
<td>Omnitel 474</td>
<td>Ipse 473</td>
<td>Wind 470</td>
<td>Andala 470</td>
<td>Tim 468</td>
<td>Blu 449</td>
</tr>
</tbody>
</table>

STRATEGY ROUND 11

Basic/Enhanced relates to E2

BLU

= lowest (Blu, Ipse, Andala)

E1

Andala = 2nd lowest (Blu, Ipse, Andala)

Minimum Bid

492

<table>
<thead>
<tr>
<th>OPI position</th>
<th>Highest. Above Ipse, Andala and Blu.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rationale (Enhanced default strategy)</td>
<td>No bid. Case 11: Do not have to bid, above E1.</td>
</tr>
<tr>
<td>Epsilon</td>
<td>0</td>
</tr>
<tr>
<td>Basic bid + epsilon</td>
<td>No bid</td>
</tr>
<tr>
<td>Net value of extra bid</td>
<td>N/A</td>
</tr>
<tr>
<td>Extra bid</td>
<td>0</td>
</tr>
<tr>
<td>Enhanced bid</td>
<td>No bid</td>
</tr>
<tr>
<td>Enhanced bid + epsilon</td>
<td>No bid</td>
</tr>
<tr>
<td>Pr(Andala quits before Ipse)</td>
<td>0.50</td>
</tr>
<tr>
<td>Pr(Blu quits before Ipse)</td>
<td>0.50</td>
</tr>
<tr>
<td>Pr(Blu quits before Andala)</td>
<td>0.50</td>
</tr>
</tbody>
</table>

END GAME STRATEGY (suggestion)

Suggest high pr(Blu quits before Ipse) and high pr(Blu quits before Andala)

BLU failed to move above Andala for 1 round. BLU failed to move above Ipse for 2 rounds. BLU inactive for 3 rounds.

JUMP WARNINGS

round bidder jump

INACTIVITY WARNINGS

TIM for 2 rounds

BLU for 3 rounds

NEW ENTRANTS & BLU COMPARISON

BLU not moved above Andala for 1 round

BLU not moved above Ipse for 2 rounds

Suggested bid

BLU+1

No bid

Rationale (Enhanced default strategy)

BLU for 3 rounds

BLU not moved above Ipse for 2 rounds

Epsilon

0

Basic bid + epsilon

No bid

Net value of extra bid

N/A

Extra bid

0

Enhanced bid

No bid

Enhanced bid + epsilon

No bid

Pr(Andala quits before Ipse)

0.50

Pr(Blu quits before Ipse)

0.50

Pr(Blu quits before Andala)

0.50

END GAME STRATEGY (suggestion)

Suggest high pr(Blu quits before Ipse) and high pr(Blu quits before Andala)

BLU failed to move above Andala for 1 round. BLU failed to move above Ipse for 2 rounds. BLU inactive for 3 rounds.

Suggested bid

BLU+1

No bid

BLU failed to move above Andala for 1 round. BLU failed to move above Ipse for 2 rounds. BLU inactive for 3 rounds.
<table>
<thead>
<tr>
<th>Rnd</th>
<th>Block 1 Bidder</th>
<th>Block 2 Bidder</th>
<th>Block 3 Bidder</th>
<th>Block 4 Bidder</th>
<th>Block 5 Bidder</th>
<th>Block 6 Bidder</th>
<th>Block 7 Bidder</th>
<th>Block 8 Bidder</th>
<th>Block 9 Bidder</th>
<th>Block 10 Bidder</th>
<th>Block 11 Bidder</th>
<th>Block 12 Bidder</th>
</tr>
</thead>
</table>

German 3G (Debitel out; Mobilcom to 2)
| Rnd | Bid | Block 1 Bidder | Bid | Block 2 Bidder | Bid | Block 3 Bidder | Bid | Block 4 Bidder | Bid | Block 5 Bidder | Bid | Block 6 Bidder | Bid | Block 7 Bidder | Bid | Block 8 Bidder | Bid | Block 9 Bidder | Bid | Block 10 Bidder | Bid | Block 11 Bidder | Bid | Block 12 Bidder | Bid |
|-----|------|----------------|------|----------------|------|----------------|------|----------------|------|----------------|------|----------------|------|----------------|------|----------------|------|----------------|------|----------------|------|

Still to

<table>
<thead>
<tr>
<th>Round</th>
<th>Revenue</th>
<th>go</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>127</td>
<td>32.2</td>
<td>18.3</td>
<td>Debitel drops out (down to 6 bidders)</td>
</tr>
<tr>
<td>146</td>
<td>42.4</td>
<td>8.1</td>
<td>Common knowledge that MobilCom dropped to 2</td>
</tr>
<tr>
<td>173</td>
<td>50.5</td>
<td>0.0</td>
<td>End of auction</td>
</tr>
</tbody>
</table>
Deviations from rational bidding

- Too little demand reduction (too greedy)
- Lack of clarity (this is bridge not poker)
- Don’t recognize winner’s curse
- Retaliation either too weak or too strong
- Failure to recognize other options
 - Secondary market
 - Subsequent offerings
Variations of SAA
Variations of SAA

• Anonymous bidding
• Generic lots vs. specific lots
Simultaneous ascending auction

• **Strengths**
 – Simple price discovery process
 – Allows arbitrage across substitutes
 – Piece together desirable packages
 – Reduces winner’s curse

• **Weaknesses**
 – Demand reduction
 – Tacit collusion
 – Parking
 – Exposure
 – Hold up
 – Complex bidding strategies
Combinatorial auctions

• Threshold problem
• Reducing exposure and mitigating threshold problem
• Alternative methods
 – SAA with augmented switching
 – SAA with package bids
 – Clock auctions
Threshold problem

• In SAA with package bids, bidders on individual lots may find it difficult to top a large package bid
 – Each individual bidder hopes others will raise
 – Result may be that too few raise to top package even though individual bids are higher
Reducing exposure while mitigating the threshold problem

- Limit packages to lots where complementaries are strong
- Eliminate jump bids
- Use clock auction to resolve negotiation among bidders on individual lots
Alternative methods

- SAA with augmented switching
- SAA with package bids
- Clock auctions
SAA with augmented switching
SAA with package bids

- Highly complex if all packages allowed
- Threshold problem can be severe
- Prices don’t exist or are made up
A consistent family of auctions

- Clock auction
- Many variations allow customization to particular auction
 - Information policy
 - Activity rule
 - Final round
Advantages to a consistent family

• Design is easier
 – Pick and choose from a menu

• Implementation is easier
 – All designs built on same stable platform

• Bidder participation costs are reduced
 – Bidders understand auction and variations
Clock-Proxy Auction
Clock auction

• Auctioneer names prices; bidders name only quantities
 – Price adjusted according to excess demand
 – Process repeated until market clears
• No exposure problem (package auction)
Proxy auction

- A sealed-bid procedure for package bidding
- Bidders specify values
- Finds bidder-Pareto optimal point in Core
 - Efficient assignment
 - Competitive revenues
Clock-proxy auction

• A clock auction followed by a final proxy round
 – Bidders directly submit bids in clock auction phase
 – When clock phase concludes, bidders have a single opportunity to input proxy values
 – Proxy phase concludes the auction
Clock-proxy auction

- All bids are kept “live” throughout auction (no bid withdrawals)
- Bids from clock phase are also treated as package bids in the proxy phase
- All bids are treated as mutually exclusive (XOR)
- Activity rules are maintained within clock phase and between clock and proxy phases
Advantages of clock-proxy auction

• Clock phase
 – Simple for bidders
 – Provides price discovery
 – Interdependent values
 – Economize on package evaluation costs

• Proxy phase
 – Efficient allocations
 – Competitive revenues
 – Reduces opportunities for collusion
Key issues and variations

- Making discrete rounds continuous
- Reducing exposure
- Promoting price discovery
- Reducing demand reduction
Making discrete rounds continuous
Making discrete rounds continuous
Making discrete rounds continuous

![Diagram showing the process of making discrete rounds continuous](image-url)
Reducing exposure

• Treatment of bids that cause demand < supply
 – Ration or reject reduction
 • Exposure problem
 • Supply = demand
 – Allow reduction
 • No exposure problem
 • Undersell
Promoting price discovery

• Revealed-preference activity rule
 – Compare times s and t (s < t),
 Prices: p_s, p_t Demands: x_s, x_t
 – At time s, x_s is better than x_t: $v(x^s) - p^s \cdot x^s \geq v(x^t) - p^s \cdot x^t$
 – At time t, x_t is better than x_s: $v(x^t) - p^t \cdot x^t \geq v(x^s) - p^t \cdot x^s$

• Adding inequalities yields the RP activity rule:

\[
(RP) \quad (p^t - p^s) \cdot (x^t - x^s) \leq 0.
\]
Reducing demand reduction

Theorem (Ausubel-Milgrom): Payoff vector resulting from proxy auction is in the core relative to the reported preferences.

• Interpretations
 – Core outcome assures competitive revenues for seller
 – Core outcome assures allocative efficiency (ascending proxy auction is not subject to inefficient demand reduction)
Advantages of clock-proxy

- **Clock**
 - Take linear prices as far as they will go
 - Simplicity and flexibility for bidders and auctioneer
 - Expand substitution possibilities
 - Minimize scope for collusion
 - No exposure problem; no threshold problem

- **Proxy**
 - Core outcome
 - Efficiency
 - Substantial seller revenues