Auctioning Many Similar Items

Lawrence Ausubel and Peter Cramton
Department of Economics
University of Maryland
Examples of auctioning similar items

• Treasury bills
• Stock repurchases and IPOs
• Telecommunications spectrum
• Electric power
• Emission allowances
Ways to auction many similar items

- Sealed-bid: bidders submit demand schedules
 - Pay-as-bid auction (traditional Treasury practice)
 - Uniform-price auction (Milton Friedman 1959)
 - Vickrey auction (William Vickrey 1961)
Pay-as-bid Auction:
All bids above P_0 win and pay bid
Uniform-Price Auction:
All bids above P_0 win and pay P_0
Vickrey Auction:
All bids above P_0 win and pay opportunity cost

\[
Q_i(p) = Q_i(p_0)
\]

\[
Q_S - \sum_{j \neq i} Q_j(p)
\]

Demand

Residual Supply

Price

Quantity
Vickrey Auction: m Discrete Items

- Allocate m items efficiently: m highest marginal values
- Winning bidder pays kth highest losing bid of others on kth item won
- Payment = social opportunity cost of items won

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>10</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>2nd</td>
<td>6</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>3rd</td>
<td>3</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>
Payment rule affects behavior

\[Q_i(p_0) \]

\[Q_S - \sum_{j \neq i} Q_j(p) \]

Price

Quantity

Pay-as-bid

Uniform-Price

Vickrey

\(p_0 \)
More ways to auction many similar items

• Ascending-bid: Clock indicates price; bidders submit quantity demanded at each price until no excess demand
 – Standard ascending-bid
 – Ausubel ascending-bid (Ausubel 1997)
Standard Ascending-Bid Auction: All bids at P_0 win and pay P_0
Ausubel Ascending-Bid:
All bids at P_0 win and pay price at which clinched

\[
\text{Residual Supply: } Q_S - \sum_{j \neq i} Q_j(p)
\]

\[
Q_i(p_0)
\]

Excess Demand

Demand $Q_i(p)$

Price

Clock

Quantity
More ways to auction many similar items

• Ascending-bid
 – Simultaneous ascending auction (FCC spectrum)

• Sequential
 – Sequence of English auctions (auction house)
 – Sequence of Dutch auctions (fish, flowers)

• Optimal auction
 – Maskin & Riley 1989
Research Program

How do standard auctions compare?

• Efficiency
 – FCC: those with highest values win

• Revenue maximization
 – Treasury: sell debt at least cost
Efficiency
(not pure common value; capacities differ)

- Uniform-price and standard ascending-bid
 - Inefficient due to demand reduction
- Pay-as-bid
 - Inefficient due to different shading
- Vickrey
 - Efficient in private value setting
 - Strategically simple: dominant strategy to bid true demand
 - Inefficient with affiliated information
- Ausubel ascending-bid
 - Same as Vickrey with private values
 - Efficient with affiliated information
Inefficiency Theorem

In any equilibrium of uniform-price auction, with positive probability objects are won by bidders other than those with highest values.

• Winning bidder influences price with positive probability
• Creates incentive to shade bid
• Incentive to shade increases with additional units
• Differential shading implies inefficiency
Inefficiency from differential shading

Large bidder makes room for smaller rival
Vickrey inefficient with affiliation

- Winner’s Curse in single-item auctions
 - Winning is bad news about value

- Winner’s Curse in multi-unit auctions
 - Winning more is worse news about value
 - Must bid less for larger quantity
 - Differential shading creates inefficiency in Vickrey
What about seller revenues?

Price

Pay-as-bid

Uniform-Price

Vickrey

Residual Supply

$Q_s - \sum_{j \neq i} Q_j(p)$

Demand

$Q_i(p)$

p_0

$Q_i(p_0)$

Quantity
Exercise

• 2 bidders (L and R), 2 identical items
• L has a value of $100 for 1 and $200 for both
• R has a value of $90 for 1 and $180 for both
• Uniform-price auction
 – Submit bid for each item
 – Highest 2 bids get items
 – 3rd highest bid determines price paid
• Ascending clock auction
 – Price starts at 0 and increases in small increments
 – Bidders express how many they want at current price
 – Bidders can only lower quantity as price rises
 – Auction ends when no excess demand (i.e. just two demanded); winners pay clock price
Uniform price may perform poorly

• Independent private values uniform on [0,1]
• 2 bidders, 2 units; L wants 2; S wants 1
• Uniform-price: unique equilibrium
 – S bids value
 – L bids value for first and 0 for second
 – Zero revenue; poor efficiency
• Vickrey
 – price = \(v_{(2)}\) on one unit, zero on other
Standard ascending-bid may be worse

- 2 bidders, 2 units; L wants 2; S wants 2
- Uniform-price: two equilibria
 - Poor equilibrium: both L and S bid value for 1
 - Zero revenue; poor efficiency
 - Good equilibrium: both L and S bid value for 2
 - Get $v_{(2)}$ for each (max revenue) and efficient
- Standard ascending-bid: unique equilibrium
 - Both L and S bid value for 1
 - S’s demand reduction forces L to reduce demand
 - Zero revenue; poor efficiency
Efficient auctions tend to yield high revenues

Theorem. *With flat demands drawn independently from the same regular distribution, seller’s revenue is maximized by awarding good to those with highest values.*

Generalizes to non-private-value model with independent signals:

\[v_i = u(s_i, s_{-i}) \]

Award good to those with highest signals if downward sloping MR and symmetry.
Downward-sloping demand: \[p_i(q_i) = v_i - g_i(q_i) \]

Theorem. *If intercept drawn independently from the same distribution, seller’s revenue is maximized by*

- *awarding good to those with highest values if constant hazard rate*
- *shifting quantity toward high demanders if increasing hazard rate*

Note: uniform-price shifts quantity toward low demanders
But uniform price has advantages

- Participation
 - Encourages participation by small bidders (since quantity is shifted toward them)
 - May stimulate competition

- Post-bid competition
 - More diverse set of winners may stimulate competition in post-auction market
Auctioning Securities

A pure common-value model with affiliation

- n risk-neutral symmetric bidders
- Each bidder has pure common value V for security and can purchase any quantity (flat demand curve w/o capacity)
Models

• Common uncertainty
 – Bidders have no private information

• Affiliated private signals
 – Bidder i gets signal S_i
 – Random variables V, S_1, …, S_n are affiliated
Results: Common Uncertainty

Proposition. (Wilson ‘79; Maxwell ‘83; Back & Zender ‘93)

- **Wide range of prices can be supported as equilibrium in uniform-price auction, even if supply is stochastic; highest yields EV**

Proposition. (Wang & Zender ‘02)

- **Many equilibria in pay-as-bid auction, even if supply is stochastic; highest yields EV**
- **Indeterminacy avoided if set reserve price (even 0)**
Results: Common Uncertainty

Theorem.

- Vickrey auction has a unique equilibrium that survives elimination of weakly-dominated strategies
- Vickrey auction has a unique symmetric equilibrium consistent with stochastic supply
- This equilibrium revenue-dominates all equilibria of all auction formats consistent with voluntary bidder participation
Results: Affiliated Private Signals

• With affiliated signals, each auction format has a “simple equilibrium” where bidders submit flat demand curves

• Conjecture: These simple equilibria provide upper bounds on revenues from each format

• Alt. ascending-bid > Vickrey > Pay-as-bid

• Std. ascending-bid > Uniform > Pay-as-bid
Results: Affiliated Private Signals

Vickrey and Ausubel ascending-bid eliminate bottom end of revenue indeterminacy:

Revenues

Pay-as-Bid Uniform Price Vickrey Standard Ascending Bid Ausubel Ascending Bid
Conclusion

• Efficient auctions should be favored
• Treasury should try Ausubel ascending-bid
• IPOs should be auctioned
Competitive Bidding Behavior in Uniform-Price Auction Markets

Peter Cramton

University of Maryland

6 January 2004
Summary

- Marginal cost bidding is a useful benchmark, but not a norm of behavior.
- Profit maximization is an appropriate norm of behavior in markets.
- Profit maximization should be expected and encouraged.
- Market rules should be based on this norm.
Uniform-price auction:
All bids below p_0 win and get paid p_0
Residual demand removes supply of other bidders

\[\text{Residual demand} = q - q_i \]

\[p_0 \]

\[q_0 \]

\[q \]

\[q_{-i} \]

\[q_i \]

\[p \]

\[p \]

\[p \]
Residual demand curve

\[D_i(p) = D(p) - \sum_{j \neq i} S_j(p) \]

As-bid supply

\[S_i(p) \]

Residual demand curve

Price

Quantity

\[p_0 \]

\[q_i \]
Bidding strategy with perfect competition

\[p_0 = \text{Loss} \]

As-bid supply: \[S_i = MC_i \]

Residual demand: \[D_i \]
Incentive to bid above marginal cost: tradeoff higher price with reduced quantity

\[p \]

\[q \]

\[\text{Residual demand} \]

\[D_i \]

\[\text{As-bid supply} \]

\[S_i \]

\[MC_i \]

\[p_0 \]

\[\text{Gain} \]

\[\text{Loss} \]

\[q_i \]
Optimal bid balances marginal gain and loss

\[p \]

\[\text{As-bid supply} \]

\[S_i \]

\[p_0 \]

\[\text{Gain} \]

\[\text{Loss} \]

\[q_i \]

\[MC_i \]

\[D_i \]

\[0 \]
Still bid above marginal cost when others bid marginal cost

\[S_i = MC_i \]

Other bidders

Firm \(i \)

\[D_i \]

\[MC_i \]

\[S_i \]

\[D \]

\[q_i \]

\[q_{-i} \]

\[p_i \]

\[p_0 \]
Residual demand response reduces incentive to inflate bids
Residual demand is steeper for large bidders

For the large bidder:
- The demand curve is steeper, indicating a more elastic demand for energy. This means that a small change in price leads to a larger change in quantity demanded.
- The supply curve is flatter, indicating a less elastic supply of energy. This means that a small change in price leads to a smaller change in quantity supplied.

For the small bidder:
- The demand curve is flatter, indicating a more inelastic demand for energy. This means that a small change in price leads to a smaller change in quantity demanded.
- The supply curve is steeper, indicating a more elastic supply of energy. This means that a small change in price leads to a larger change in quantity supplied.
Large bidder makes room for its smaller rivals

Large bidder

Small bidder

\(p \)

\(q_l \)

\(q_s \)

\(p_0 \)

\(D_l \)

\(S_l \)

\(D_s \)

\(S_s \)

\(MC_l \)

\(MC_s \)
Economic vs. Physical Withholding
Forward contracts mitigate incentive to bid above marginal cost

\[p \]

\[q \]

\[S_i \text{ no forward} \]

\[S_i \text{ with forward} \]

\[p' \]

\[p_0 \]

Forward sale

\[q_i' \]

\[q_F \]

\[q_i \]

\[q_S \]

Residual demand

\[MC_i \]

\[D_i \]
California not more concentrated

<table>
<thead>
<tr>
<th>California</th>
<th>New York</th>
<th>PJM</th>
<th>New England</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>Owner</td>
<td>Owner</td>
<td>Owner</td>
</tr>
<tr>
<td>PG&E</td>
<td>NYPA</td>
<td>PSE&G</td>
<td>PG&E NEG</td>
</tr>
<tr>
<td>17%</td>
<td>17%</td>
<td>20%</td>
<td>17%</td>
</tr>
<tr>
<td>AES</td>
<td>NRG Power</td>
<td>PEKO</td>
<td>NRG</td>
</tr>
<tr>
<td>9%</td>
<td>12%</td>
<td>17%</td>
<td>8%</td>
</tr>
<tr>
<td>Reliant</td>
<td>LIPA</td>
<td>PP&L</td>
<td>Sithe</td>
</tr>
<tr>
<td>8%</td>
<td>12%</td>
<td>16%</td>
<td>7%</td>
</tr>
<tr>
<td>Mirant</td>
<td>Reliant</td>
<td>GPU</td>
<td>Notheast Util</td>
</tr>
<tr>
<td>8%</td>
<td>7%</td>
<td>13%</td>
<td>6%</td>
</tr>
<tr>
<td>Duke</td>
<td>Keyspan</td>
<td>PEPCO</td>
<td>Northeast Gen Serv</td>
</tr>
<tr>
<td>7%</td>
<td>6%</td>
<td>11%</td>
<td>6%</td>
</tr>
<tr>
<td>SCE</td>
<td>Constellation</td>
<td>BG&E</td>
<td>FP&L Energy</td>
</tr>
<tr>
<td>6%</td>
<td>5%</td>
<td>11%</td>
<td>5%</td>
</tr>
<tr>
<td>Dynergy</td>
<td>Entergy</td>
<td>Connectiv</td>
<td>Mirant</td>
</tr>
<tr>
<td>6%</td>
<td>5%</td>
<td>9%</td>
<td>5%</td>
</tr>
<tr>
<td>Other</td>
<td>Mirant</td>
<td>Other</td>
<td>Calpine</td>
</tr>
<tr>
<td>39%</td>
<td>5%</td>
<td>3%</td>
<td>4%</td>
</tr>
<tr>
<td>Dynergy</td>
<td>AES</td>
<td>Other</td>
<td>Wisvest</td>
</tr>
<tr>
<td>Other</td>
<td>Sithe</td>
<td>Other</td>
<td>Duke Energy</td>
</tr>
<tr>
<td>Other</td>
<td>Other</td>
<td>Other</td>
<td>Other</td>
</tr>
<tr>
<td>Other</td>
<td>Other</td>
<td></td>
<td>Other</td>
</tr>
<tr>
<td>Other</td>
<td>Other</td>
<td></td>
<td>33%</td>
</tr>
<tr>
<td>Total MW</td>
<td>Total MW</td>
<td>Total MW</td>
<td>Total MW</td>
</tr>
<tr>
<td>44,682</td>
<td>36,342</td>
<td>65,067</td>
<td>26,441</td>
</tr>
<tr>
<td>as of July 1999</td>
<td>as of January 2002</td>
<td>as of January 2000</td>
<td>as of January 2001</td>
</tr>
</tbody>
</table>

Sources