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Definition:  An n-player, static game of complete information 
consists of an n-tuple of strategy sets and an n-tuple of payoff 
functions, denoted by G = {S1, … , Sn; u1, … , un}

Si, the strategy set of player i, is the set of all 
permissible moves for player i. We write si ∈ Si for 
one of player i’s strategies.

ui, the payoff function of player i, is the utility, profit, 
etc. for player i, and depends on the strategies chosen 
by all the players: ui(s1, … , sn).



Example: Prisoners’ Dilemma

–4 ,–40 , –5Confess

–5 , 0–1 , –1
Remain 
Silent

Confess
Remain 
Silent

Prisoner 
I

Prisoner 
II

Example: Battle of the Sexes

1 , 20 , 0Ballet

0 , 02 , 1Boxing

BalletBoxing

M

F



Definition: A Nash equilibrium of G (in pure strategies) 
consists of a strategy for every player with the property that no 
player can improve her payoff by unilaterally deviating: 

(s1*, … , sn*) with the property that, for every player i:
ui (s1*, … , si–1*, si*, si+1*, … , sn*) 
≥ ui (s1*, … , si–1*, si, si+1*, … , sn*) 

for all si ∈ Si.

Equivalently, a Nash equilibrium is a mutual best response. 
That is, for every player i, si* is a solution to:
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Cournot (1838) Model of Oligopoly
(a) n firms
(b) Each firm i has a constant marginal (and average) cost of ci
(c) Inverse aggregate demand function of P(Q)
(d) Each firm simultaneously and independently selects a 

strategy consisting of a quantity qi ∈ [0, a] (where P(a) = 0)

Then, with two firms, the payoff functions are:

and the strategy sets are:

S1 = [0, a]               S2 = [0, a]

It is often also convenient to assume a common marginal cost (i.e.,  
c1 = c = c2) and a linear demand curve P(Q) = a – Q.
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Solution of Cournot Model with Two Firms
(q1*, q2*) is a Nash equilibrium if and only if:

q1* solves max{q1 [P(q1 + q2*) – c]}
q1

and
q2* solves max{q2 [P(q1* + q2) – c]}.

q2

With P(Q) = a – Q, we get first order conditions:
q1(–1) + a – q1 – q2* – c|q1 = q1*= 0

(1) a – 2q1* – q2* = c
and:q2(–1) + a – q1* – q2 – c|q2 = q2*= 0

(2)  a – q1* – 2q2* = c
Subtracting (1) – (2) gives:

q2* – q1* = 0
Substituting q2* = q1* into (1) gives:

a – 2q1* – q1* = c    
q1* = (a – c) / 3 ;  q2* = (a – c) / 3  .

Best Response for Firm 1 to q2
P

Q

Original demand curve
D(p) = a – p

Residual demand curve after q2

D(p) = a – q2 – p

(0, a – q2)

(0, a)

((a – q2 – c)/2, (a – q2 + c)/2)

((a – c)/2, (a + c)/2)

(a – q2 – c, c) (a – c, c)

R1(q2) = (a – q2 – c)/2
Similarly, the best response for firm 2 to q1 is:

R2(q1) = (a – q1 – c)/2



Bertrand (1883) Model of Oligopoly
(a) n firms
(b) Each firm i has a constant marginal (and average) cost of ci
(c) Aggregate demand function of Q(P)
(d) Each firm simultaneously and independently selects a 

strategy consisting of a price pi ∈ [0, a] (where Q(a) = 0)

Then, with two firms, the payoff functions are:

and
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Bertrand (1883) Model of Oligopoly
As in the Cournot game, the strategy sets are:

S1 = [0, a]               S2 = [0, a]

and it is again usually convenient to assume a common marginal 
cost (i.e.,  c1 = c = c2).

Solution of Bertrand game with two firms and 
common marginal cost c1 = c = c2 :

Observation 1:  In any Nash equilibrium (p1
*, p2

*), it must be the 
case that p1

* ≥ c and p2
* ≥ c.

Proof: Suppose otherwise. Without loss of generality, say p1
* ≤ p2

*

and p1
* < c. Then firm 1 is currently earning strictly negative 

profits and could profitably deviate to p1
* ≥ c (thereby instead 

earning nonnegative profits).



Bertrand (1883) Model of Oligopoly
Observation 2:  In any Nash equilibrium (p1

*, p2
*), it must be the 

case that p1
* = p2

*.

Proof: Suppose otherwise. Without loss of generality, say p1
* < p2

*

(and  p1
* ≥ c). Then firm 2 is currently earning zero profits and, if  

p1
* > c, firm 2 can profitably deviate to p2

* = p1
* – ε. Meanwhile, 

if p1
* = c, firm 1 can profitably deviate to p1

* = p2
* – ε.

Observation 3:  The unique Nash equilibrium is (p1
*, p2

*) = (c, c).

Proof: By Observations 1 and 2, the only remaining possibility is 
p1

* = p* = p2
* > c. Then each firm is currently earning profits of:

and either firm could profitably deviate to p* – ε and thereby come 
arbitrarily close to earning:

Q.E.D.

1
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The Pollution Game
Consumers have a choice of three different models of cars, which
are identical in all respects except for price and emissions:

Model A: pA = $15,000; eA = 100 units
Model B: pB = $16,000; eB = 10 units
Model C: pC = $17,000; eC = 0 units

A consumer’s utility from using a car is given by: 
U = v – p – E 

where v = reservation value of a car;
p = price paid for model bought;

E = = aggregate emissions (over all consumers) 
where ei = 100 or 10 or 0 , depending on 
which model is purchased by consumer i.
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Each of you have to choose an integer between 0 and 100 in order
to guess "2/3 of the average of the responses given by all 
students in the course".

Each student who guesses the integer which is 2/3 of the 
average of all the responses rounded up to the nearest integer, 
wins.

What is your guess?

The Problem

Guess 2/3 of Average

Guess 2/3 of Average
All 
Courses

2370
35.79

% all%
8% 12%
6% 8%
0% 2%

10% 6%
2% 4%
6% 10%

14% 11%
14% 11%
14% 16%
26% 20%

50
51-100

22
23-32
33-34
35-49

0-1
2-13

14-15
16-21

Average: 38.46

Answer  

Statistics
# of answers: 50



Dominated strategies:
Strategy si (strictly) dominates strategy si′ if, for 
all possible strategy combinations of opponents, si

yields a (strictly) higher payoff than si′ to player i.

Iterated elimination of strictly dominated strategies:
Eliminate all strategies which are dominated, 
relative to opponents’ strategies which have not yet 
been eliminated.

Statistics
All: 2534

A B C D
[1] A 5,2 2,6 1,4 0,4
[2] B 0,0 3,2 2,1 1,1
[3] C 7,0 2,2 1,5 5,1
[4] D 9,5 1,3 0,2 4,8

% all%
5% 3%

37% 32%
23% 33%
34% 32%

[2]
[3]
[4]

Player 1

Answer  
[1]

# of answers: 73
Player 2

Successive Elimination
You are player 1 in a two-person game with the following payoff 
matrix:

What will you play?



Results on Iterated Elimination of Strictly 
Dominated Strategies

Proposition 1:  If iterated elimination of strictly dominated 
strategies yields a unique strategy n-tuple, then this 
strategy n-tuple is the unique Nash equilibrium 
(and it is a strict Nash equilibrium).

(Definition: A strict Nash equilibrium is a strategy 
n-tuple with the property that every unilateral deviation 
makes the deviator strictly worse off.)

Proposition 2:  Every Nash equilibrium survives iterated 
elimination of strictly dominated strategies.

R2(q1)

R1(q2)

q1 10

1

q2

Cournot Duopoly: Best Response Functions



R2(q1)

R1(q2)

q1 10

1

q1 > ½ is strictly dominated by q1 = ½

q2

R2(q1)

R1(q2)

q1 10

1

q1 > ½ is strictly dominated by q1 = ½
q2 > ½ is strictly dominated by q2 = ½

q2



R2(q1)

R1(q2)

q1 10

1

q1 > ½ is strictly dominated by q1 = ½
q2 > ½ is strictly dominated by q2 = ½
q1 < ¼ is strictly dominated by q1 = ¼

q2

R2(q1)

R1(q2)

q1 10

1

q1 > ½ is strictly dominated by q1 = ½
q2 > ½ is strictly dominated by q2 = ½
q1 < ¼ is strictly dominated by q1 = ¼
q2 < ¼ is strictly dominated by q2 = ¼

q2



Example: Matching Pennies

1 , –1–1 , 1Tails

–1 , 11 , –1Heads

TailsHeads

I

II

Definition: Let player i have K pure strategies available. 
Then a mixed strategy for player i is a probability 
distribution over those K strategies.

Notation:
Strategy space:

S
i
= {s

i1 
,… , s

iK
}

Mixed strategy:
p

i
= (p

i1 
,… , p

iK
)

such that

and each pik is between zero and one (0 ≤ pik ≤ 1).
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k

p
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Facts:

1. Theorem (Nash, 1950):
Every finite game has at least one Nash equilibrium 
(when mixed strategies are permitted).

2. If, in a mixed-strategy Nash equilibrium, player i 
places positive probability on each of two strategies, 
then player i must be indifferent between these two 
strategies (i.e., they yield player i the same expected 
payoff).

Best response correspondence of Player 2

r

q

(Heads)   1

1
(Heads)

(Tails)

(Tails)
½

r*(q)

Probability Player 2
Plays Heads

Probability
Player 1 
Plays Heads



Best response correspondence of Player 1

r

q

(Heads)   1

1
(Heads)

(Tails)

(Tails)

½
q*(r)

Probability Player 2
Plays Heads

Probability
Player 1 
Plays Heads

Matching Pennies

r

q

(Heads)   1

1
(Heads)

(Tails)

(Tails)

½
q*(r)

Probability Player 2
Plays Heads

Probability
Player 1 
Plays Heads½

r*(q)



Example: Battle of the Sexes

1 , 20 , 0Ballet

0 , 02 , 1Boxing

BalletBoxing

M

F

Battle of the Sexes

r

q

(Boxing) 1

1
(Boxing)

(Ballet)

(Ballet)

⅔

⅓

Probability
Player M 

Plays Boxing

Probability Player F
Plays Boxing



For best response to exist need 
maximum to exist

• Continuous function on compact set has a 
maximum; hence, require:
– closed or no max

– bounded or no max

– continuous or no max

Brouwer Fixed Point Theorem:
Suppose that X is a nonempty, compact, convex set in 

. Also suppose that the function f : X → X is 
continuous. Then there exists a fixed point of f, i.e., a 
point x ∈ X such that x = f (x).

Kakutani Fixed Point Theorem:
Suppose X as above. Also suppose that the 
correspondence F : X → X is nonempty and convex-
valued, and that F(·) has a closed graph. Then there 
exists a fixed point of F, i.e., a point x ∈ X such that 
x ∈ F (x).

n



Notes:

(1) The correspondence F(⋅) is said to have a closed graph
if, simply, the graph of F(⋅) is a closed set. That is, F(⋅) has a 
closed graph if it has the property that whenever the sequence 
(xn , yn) → (x , y), with yn ∈ F(xn) for every n, then y ∈ F(x).

Essentially the same as upper hemicontinuity (u.h.c.).

(2) The best-response correspondence BRi(⋅) of each player i
has a closed graph, by the following argument.
Suppose that there is a sequence (xn , yn) → (x , y) such that 
yn ∈ BRi(x

n) for every n, but y ∉ BRi(x). Then there exists ε > 0 
and y ′ ≠ y such that:

ui(y ′, x)  >  ui(y, x) + ε .
But this contradicts:

ui(y ′, x
n)  ≤ ui(y

n, xn) , for every n.

Product Differentiation: The Hotelling Model

Consumers are uniformly distributed on the interval [0, 1].
There are two firms, located at x = 0 and x = 1, which each

produce the same physical good at marginal cost of c.
Consumers have transportation cost t per unit of distance.

Firm 1 Firm 2x

0 1
cost tx cost t(1 – x)

Each consumer consumes 0 or 1 units of the good:
u(0) = 0;   u(1) = v.

If firm 1 charges p1 and firm 2 charges p2, the consumer
located at x gets v – p1 – tx from purchasing at firm 1 and
gets v – p2 – t(1 – x) from purchasing at firm 2.



Let     denote the customer who is indifferent between purchasing 
at firm 1 and firm 2. Then:

The profits of firm 1 are given by:

The profits of firm 2 are given by:

These imply the first-order conditions of:
(1)  t + c + p2* – 2p1* = 0
(2)  t + c + p1* – 2p2* = 0 .

Solving yields:
p1* = t + c;       p2* = t + c .

x
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