Outline for Static Games of Complete Information

- I. Definition of a game
- II. Examples
- III. Definition of Nash equilibrium
- IV. Examples, continued
- V. Iterated elimination of dominated strategies
- VI. Mixed strategies
- VII. Existence theorem on Nash equilibria
- VIII. The Hotelling model and extensions

Copyright © 2004 by Lawrence M. Ausubel

<u>Definition</u>: An *n*-player, <u>static game</u> of complete information consists of an *n*-tuple of strategy sets and an *n*-tuple of payoff functions, denoted by $G = \{S_1, \dots, S_n; u_1, \dots, u_n\}$

- S_i , the <u>strategy set</u> of player i, is the set of all permissible moves for player i. We write $s_i \in S_i$ for one of player i's strategies.
- u_i , the **payoff function** of player i, is the utility, profit, etc. for player i, and depends on the strategies chosen by all the players: $u_i(s_1, \ldots, s_n)$.

Example: Prisoners' Dilemma

$\begin{array}{c|c} \textbf{Prisoner} \\ \textbf{II} \\ \hline \\ \textbf{Remain} \\ \textbf{Silent} \\ \hline \\ \textbf{Confess} \\ \hline \\ \textbf{Confess} \\ \hline \\ \textbf{O}, -5 \\ \hline \\ \textbf{-4}, -4 \\ \hline \end{array}$

Example: Battle of the Sexes

<u>Definition</u>: A <u>Nash equilibrium</u> of G (in pure strategies) consists of a strategy for every player with the property that no player can improve her payoff by unilaterally deviating:

$$(s_1^*, \dots, s_n^*)$$
 with the property that, for every player i :
 $u_i(s_1^*, \dots, s_{i-1}^*, s_i^*, s_{i+1}^*, \dots, s_n^*)$
 $\geq u_i(s_1^*, \dots, s_{i-1}^*, s_i, s_{i+1}^*, \dots, s_n^*)$
for all $s_i \in S_i$.

Equivalently, a Nash equilibrium is a mutual best response. That is, for every player i, s_i^* is a solution to:

$$s_i^* \in \underset{s_i \in S_i}{\arg\max} \left\{ u_i(s_1^*, \dots, s_{i-1}^*, s_i, s_{i+1}^*, \dots, s_n^*) \right\}$$

Example: Prisoners' Dilemma

Prisoner II

		Remain Silent	Confess
Prisoner	Remain Silent	-1,-1	-5,0
I	Confess	0, -5	-4 ,-4

Example: Battle of the Sexes

F

		Boxing	Ballet
M	Boxing	2,1	0,0
	Ballet	0,0	1,2

Cournot (1838) Model of Oligopoly

- (a) n firms
- (b) Each firm i has a constant marginal (and average) cost of c_i
- (c) Inverse aggregate demand function of P(Q)
- (d) Each firm simultaneously and independently selects a strategy consisting of a *quantity* $q_i \in [0, a]$ (where P(a) = 0)

Then, with two firms, the payoff functions are:

$$\pi_1(q_1, q_2) = q_1 P(q_1 + q_2) - c_1 q_1$$

$$\pi_2(q_1, q_2) = q_2 P(q_1 + q_2) - c_2 q_2.$$

and the strategy sets are:

$$S_1 = [0, a]$$
 $S_2 = [0, a]$

It is often also convenient to assume a common marginal cost (i.e., $c_1 = c = c_2$) and a linear demand curve P(Q) = a - Q.

Solution of Cournot Model with Two Firms

 (q_1^*, q_2^*) is a Nash equilibrium if and only if: q_1^* solves $\max_{q_1} \{q_1 [P(q_1 + q_2^*) - c]\}$

and

$$q_2^*$$
 solves $\max_{q_2} \{q_2 [P(q_1^* + q_2) - c]\}.$

With P(Q) = a - Q, we get first order conditions:

$$q_1(-1) + a - q_1 - q_2 * - c|_{q_1 = q_1} * = 0$$

$$(1) a - 2q_1^* - q_2^* = c$$

and:
$$q_2(-1) + a - q_1^* - q_2 - c|_{q_2 = q_2^*} = 0$$

(2)
$$a - q_1^* - 2q_2^* = c$$

Subtracting (1) - (2) gives:

$$q_2^* - q_1^* = 0$$

Substituting $q_2^* = q_1^*$ into (1) gives:

$$a - 2q_1 * - q_1 * = c$$

$$q_1^* = (a - c) / 3$$
; $q_2^* = (a - c) / 3$.

Best Response for Firm 1 to q₂

$$R_1(q_2) = (a - q_2 - c)/2$$

Similarly, the best response for firm 2 to q_1 is:

$$R_2(q_1) = (a - q_1 - c)/2$$

Bertrand (1883) Model of Oligopoly

- (a) n firms
- (b) Each firm i has a constant marginal (and average) cost of c_i
- (c) Aggregate demand function of Q(P)
- (d) Each firm simultaneously and independently selects a strategy consisting of a *price* $p_i \in [0, a]$ (where Q(a) = 0)

Then, with two firms, the payoff functions are:

$$\pi_{1}(p_{1}, p_{2}) = \begin{cases} Q(p_{1})[p_{1} - c_{1}], & \text{if } p_{1} < p_{2} \\ \frac{1}{2}Q(p_{1})[p_{1} - c_{1}], & \text{if } p_{1} = p_{2} \\ 0, & \text{if } p_{1} > p_{2} \end{cases}$$

and

$$\pi_{2}(p_{1}, p_{2}) = \begin{cases} Q(p_{2})[p_{2} - c_{2}], & \text{if } p_{2} < p_{1} \\ \frac{1}{2}Q(p_{2})[p_{2} - c_{2}], & \text{if } p_{2} = p_{1} \\ 0, & \text{if } p_{2} > p_{1} \end{cases}$$

Bertrand (1883) Model of Oligopoly

As in the Cournot game, the strategy sets are:

$$S_1 = [0, a]$$
 $S_2 = [0, a]$

and it is again usually convenient to assume a common marginal cost (i.e., $c_1 = c = c_2$).

Solution of Bertrand game with two firms and common marginal cost $c_1 = c = c_2$:

Observation 1: In any Nash equilibrium (p_1^*, p_2^*) , it must be the case that $p_1^* \ge c$ and $p_2^* \ge c$.

<u>Proof</u>: Suppose otherwise. Without loss of generality, say $p_1^* \le p_2^*$ and $p_1^* \le c$. Then firm 1 is currently earning strictly negative profits and could profitably deviate to $p_1^* \ge c$ (thereby instead earning nonnegative profits).

Bertrand (1883) Model of Oligopoly

Observation 2: In any Nash equilibrium (p_1^*, p_2^*) , it must be the case that $p_1^* = p_2^*$.

<u>Proof</u>: Suppose otherwise. Without loss of generality, say $p_1^* < p_2^*$ (and $p_1^* \ge c$). Then firm 2 is currently earning zero profits and, if $p_1^* > c$, firm 2 can profitably deviate to $p_2^* = p_1^* - \varepsilon$. Meanwhile, if $p_1^* = c$, firm 1 can profitably deviate to $p_1^* = p_2^* - \varepsilon$.

Observation 3: The unique Nash equilibrium is $(p_1^*, p_2^*) = (c, c)$.

<u>Proof</u>: By Observations 1 and 2, the only remaining possibility is $p_1^* = p^* = p_2^* > c$. Then each firm is currently earning profits of: $\frac{1}{2}D(p^*)[p^*-c]$

and either firm could profitably deviate to $p^* - \varepsilon$ and thereby come arbitrarily close to earning:

$$D(p^*)[p^*-c]. Q.E.D.$$

The Pollution Game

Consumers have a choice of three different models of cars, which are identical in all respects except for price and emissions:

Model A: $p_A = \$15,000$; $e_A = 100$ units Model B: $p_B = \$16,000$; $e_B = 10$ units Model C: $p_C = \$17,000$; $e_C = 0$ units

A consumer's utility from using a car is given by:

$$U = v - p - E$$

where v = reservation value of a car; p = price paid for model bought;

 $E = \sum_{i=1}^{N} e_i$ = aggregate emissions (over all consumers) where $e_i = 100$ or 10 or 0, depending on which model is purchased by consumer i.

Guess 2/3 of Average

The Problem

Each of you have to choose an integer between 0 and 100 in order to guess "2/3 of the average of the responses given by all students in the course".

Each student who guesses the integer which is 2/3 of the average of all the responses rounded up to the nearest integer, wins.

What is your guess?

Guess 2/3 of Average

Statistics

of answers: Average: All Courses 50 2370

38.46 35.79

Answer	%	all%
0-1	8%	12%
2-13	6% •	8% -
14-15	0%	2%
16-21	10% -	6% -
22	2%•	4%-
23-32	6%	10%
33-34	14%	11% -
35-49	14%	11% -
50	14% -	16% -
51-100	26%	20%

Dominated strategies:

Strategy s_i (strictly) **dominates** strategy s_i ' if, for *all* possible strategy combinations of opponents, s_i yields a (strictly) higher payoff than s_i ' to player i.

Iterated elimination of strictly dominated strategies:

Eliminate all strategies which are dominated, relative to opponents' strategies which have not yet been eliminated.

Successive Elimination

You are player 1 in a two-person game with the following payoff matrix:

What will you play?

Results on Iterated Elimination of Strictly Dominated Strategies

Proposition 1: If iterated elimination of strictly dominated strategies yields a *unique* strategy *n*-tuple, then this strategy *n*-tuple is the *unique* Nash equilibrium (and it is a *strict* Nash equilibrium).

(Definition: A *strict* Nash equilibrium is a strategy n-tuple with the property that every unilateral deviation makes the deviator *strictly* worse off.)

Proposition 2: Every Nash equilibrium survives iterated elimination of strictly dominated strategies.

Cournot Duopoly: Best Response Functions

 $q_1 > \frac{1}{2}$ is strictly dominated by $q_1 = \frac{1}{2}$

 $q_1 > \frac{1}{2}$ is strictly dominated by $q_1 = \frac{1}{2}$ $q_2 > \frac{1}{2}$ is strictly dominated by $q_2 = \frac{1}{2}$

 $q_1 > \frac{1}{2}$ is strictly dominated by $q_1 = \frac{1}{2}$

 $q_2 > \frac{1}{2}$ is strictly dominated by $q_2 = \frac{1}{2}$

 $q_1 < \frac{1}{4}$ is strictly dominated by $q_1 = \frac{1}{4}$

 $q_1 > \frac{1}{2}$ is strictly dominated by $q_1 = \frac{1}{2}$

 $q_2 > \frac{1}{2}$ is strictly dominated by $q_2 = \frac{1}{2}$

 $q_1 < \frac{1}{4}$ is strictly dominated by $q_1 = \frac{1}{4}$

 $q_2 < \frac{1}{4}$ is strictly dominated by $q_2 = \frac{1}{4}$

Example: Matching Pennies

II

		Heads	Tails
I	Heads	1,-1	-1,1
	Tails	-1 , 1	1,-1

<u>Definition</u>: Let player i have K pure strategies available. Then a <u>**mixed strategy**</u> for player i is a probability distribution over those K strategies.

Notation:

Strategy space:

$$S_{i} = \{s_{i1}, \dots, s_{iK}\}$$

Mixed strategy:

$$p_i = (p_{i1}, \dots, p_{iK})$$

such that
$$\sum_{k=1}^{K} p_{ik} = 1$$

and each p_{ik} is between zero and one $(0 \le p_{ik} \le 1)$.

Facts:

- 1. Theorem (Nash, 1950):
 Every finite game has at least one Nash equilibrium (when mixed strategies are permitted).
- 2. If, in a mixed-strategy Nash equilibrium, player i places positive probability on each of two strategies, then player i must be indifferent between these two strategies (i.e., they yield player i the same expected payoff).

Best response correspondence of Player 2

Best response correspondence of Player 1

Example: Battle of the Sexes

F

		Boxing	Ballet
M	Boxing	2,1	0,0
	Ballet	0,0	1,2

For best response to exist need maximum to exist

• Continuous function on compact set has a maximum; hence, require:

Brouwer Fixed Point Theorem:

Suppose that X is a nonempty, compact, convex set in \mathbb{R}^n . Also suppose that the *function* $f: X \to X$ is continuous. Then there exists a *fixed point* of f, i.e., a point $x \in X$ such that x = f(x).

Kakutani Fixed Point Theorem:

Suppose X as above. Also suppose that the *correspondence* $F: X \to X$ is nonempty and convex-valued, and that $F(\cdot)$ has a closed graph. Then there exists a *fixed point* of F, i.e., a point $x \in X$ such that $x \in F(x)$.

Notes:

- (1) The correspondence $F(\cdot)$ is said to have a *closed graph* if, simply, the graph of $F(\cdot)$ is a closed set. That is, $F(\cdot)$ has a closed graph if it has the property that whenever the sequence $(x^n, y^n) \to (x, y)$, with $y^n \in F(x^n)$ for every n, then $y \in F(x)$. Essentially the same as upper hemicontinuity (u.h.c.).
- (2) The best-response correspondence $BR_i(\cdot)$ of each player i has a closed graph, by the following argument. Suppose that there is a sequence $(x^n, y^n) \to (x, y)$ such that $y^n \in BR_i(x^n)$ for every n, but $y \notin BR_i(x)$. Then there exists $\varepsilon > 0$ and $y' \neq y$ such that:

$$u_i(y', x) > u_i(y, x) + \varepsilon$$
.

But this contradicts:

$$u_i(y', x^n) \le u_i(y^n, x^n)$$
, for every n .

Product Differentiation: The Hotelling Model

Consumers are uniformly distributed on the interval [0, 1]. There are two firms, located at x = 0 and x = 1, which each produce the same physical good at marginal cost of c. Consumers have transportation cost t per unit of distance.

Each consumer consumes 0 or 1 units of the good:

$$u(0) = 0$$
; $u(1) = v$.

If firm 1 charges p_1 and firm 2 charges p_2 , the consumer located at x gets $v - p_1 - tx$ from purchasing at firm 1 and gets $v - p_2 - t(1 - x)$ from purchasing at firm 2.

Let \tilde{x} denote the customer who is indifferent between purchasing at firm 1 and firm 2. Then:

$$\begin{split} v-p_1-t\tilde{x}&=v-p_2-t(1-\tilde{x})\\ 2t\tilde{x}&=t+p_2-p_1\\ \tilde{x}&=\frac{1}{2}+\frac{p_2-p_1}{2t}\,. \end{split}$$

The profits of firm 1 are given by:

$$\pi_1(p_1, p_2) = [p_1 - c] \tilde{x} = [p_1 - c] [\frac{1}{2} + \frac{p_2 - p_1}{2t}].$$

The profits of firm 2 are given by:

$$\pi_2(p_1, p_2) = [p_2 - c][1 - \tilde{x}] = [p_2 - c][\frac{1}{2} - \frac{p_2 - p_1}{2t}].$$

These imply the first-order conditions of:

(1)
$$t + c + p_2^* - 2p_1^* = 0$$

(2)
$$t + c + p_1^* - 2p_2^* = 0$$
.

Solving yields:

$$p_1^* = t + c;$$
 $p_2^* = t + c.$