The Convergence of Market Designs for Adequate Generating Capacity

Peter Cramton and Steven Stoft
22 March 2006

A tale on how (not) to design markets

“If all else fails, then do the right thing.”
-- Evan Kwerel, FCC

• 1998: Traditional spot capacity market
• 2004: Modern spot capacity market
 – Addresses market power
 – Addresses performance incentives
• 2006: Forward capacity market

Why a capacity market at all?

Other industries don’t have one

Electricity demand is inelastic

Result: Generators cannot cover FC from energy revenues
Purpose of market

- Induce just enough investment to maintain adequate resources
- Induce efficient mix and operation of resources
- Reduce market risk
- Avoid market power in capacity market
- Reduce market power in energy market

“Everything should be made as simple as possible ... but not simpler.” -- Einstein

Round 1
Traditional Spot Capacity Market

<table>
<thead>
<tr>
<th>Quantity</th>
<th>True supply</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>$0</td>
<td>Competitive price = $0</td>
</tr>
</tbody>
</table>

Round 2
Modern Spot Capacity Mechanism (LICAP)

LICAP market clearing
- Suppliers bid as they wish
- Clearing price determined by actual capacity

Round 3
Forward Capacity Market

- Why forward capacity market?
- Auction mechanics
- Price formation
- Performance incentives
Why forward procurement?

- New projects compete in advance of entry
 - Coordinated entry
 - Less uncertainty in achieving target (buy less)
 - New capacity sets price directly
 - Less reliance on demand curve for price setting
- Long-term commitment for new capacity
 - Reduced investor risk
 - Better price signal for new investment

Planning period

- Annual auction occurs three years before commitment begins
- Allows new projects to compete

Commitment period

- Existing capacity: one year
 - Already invested. No need for long commitment
 - Shorter commitment reduces risk
 - No need to arbitrage across years
- New capacity: five years (at most)
 - Longer commitment reduces investment risk
 - Price better reflects cost of new entry
 - New capacity can select shorter commitment in qualification
- New and existing capacity paid the same price in first year of commitment
- New capacity price is indexed after first year

Descending clock auction

- Auctioneer announces high starting price
- Suppliers name quantities
- Excess supply is determined
- Auctioneer announces a lower price
- Process continues until supply equals demand

Capacity requirements

- Before auction, ISO determines for first year of commitment period
 - Minimum capacity in each zone and system
 - Transfer limits between zones
- System requirement is set at Installed Capability Requirement (ICR)
 - Safety margin beyond ICR not needed
 - Entry is coordinated
 - Adjustments are possible
Starting price

- Starting price must be set sufficiently high to create significant excess supply
- Setting too high a starting price causes little harm
 - Competition among potential projects determines clearing price; high start quickly bid down
- Setting too low a starting price destroys auction
 - Inadequate supply or insufficient competition
- Price of $16/kW-month is recommended
- Note clearing price will exceed cost of new entry in some years to the extent it is below cost of new entry in other years (of surplus)

Zone selection criterion

- Zones determined before auction based on transfer limits that may bind in auction
- Potential import constrained zone
 - Not a separate zone if installed capacity exceeds local sourcing requirement
- Potential export constrained zone
 - Modeled in auction

Mechanics: Single zone

- Clock auction done in discrete rounds
- In each round,
 - Auctioneer announces
 - Excess supply at end of prior round
 - Start of round price
 - End of round price
 - Each bidder then names
 - Supply at all prices between start of round price and end of round price
 - Auctioneer determines excess supply at end of round price
 - If excess supply, auction continues
 - If no excess supply, clearing price determined

Individual Supply Bid, Round 6

- Bidders can only maintain or reduce quantity as price falls
- “Intraround bids”
 - Better expression of bidder preferences
 - Better control of pace of auction
 - Larger bid decrements do not reduce efficiency
 - Ties are reduced

Mechanics: Multiple zones

- Auction begins just as with a single zone: a single price for all capacity
- Price separation only occurs if and when transfer limits bind
Three zone example

1. Connecticut potentially import constrained
2. Maine potentially export constrained
3. Rest of pool
 • Auction finds prices and supply levels such that
 – System requirement is met
 – Connecticut requirement is met with local capacity and imports
 – Maine does not supply more than its local need plus export limit

Prices depend on binding constraints

• Neither Connecticut nor Maine bind
 – Prices: Connecticut = Rest of Pool = Maine
• Only Connecticut constraint binds
 – Prices decline until Connecticut binds, remaining prices decline until system met
 – Prices: Connecticut > Rest of Pool = Maine
• Only Maine constraint binds
 – Prices decline until system requirement met, Maine price declines until Maine constraint met
 – Prices: Connecticut = Rest of Pool > Maine
• Both Connecticut and Maine constraints bind
 – Prices decline until Connecticut binds, remaining prices decline until system met, then Maine declines until Maine constraint met
 – Price: Connecticut > Rest of Pool > Maine

Information policy

• Demand curve and starting price announced before auction
• After every round, auctioneer reports
 – System excess supply at end of round price
 • System excess supply calculation respects export limits for export constrained zones
 – Oversupply in export constrained zones
 – Zone-specific excess supply in import constrained zones is not reported

No rationing, except imports/exports and existing capacity

• What happens if a bidder drops from 800 MW to 600 MW at the clearing price? Either 800 MW or 600 MW is accepted
• No rationing respects lumpy investments
• If multiple bidders drop at the clearing price, the bids are accepted to minimize excess supply
• Import/export bids may be rationed
• Existing capacity may be rationed

Market power

• Addressing market power in capacity market is essential
• Strong incentive to exercise market power
 – Existing capacity has substantial sunk costs
 – New capacity is only a tiny fraction of total
 – Market is concentrated, especially in zones
 • Any of top-4 suppliers could unilaterally set price
• Long-term price signals are more stable and efficient if determined from competitive forces, rather than market power

Market power solution

• New capacity
 – New capacity bids are not mitigated in any way (except starting price)
 – Assumes competition for new capacity
• Existing capacity
 – For purposes of price setting, all existing capacity, except for retirements and imports/exports, is considered bid in at a price of zero
 – Capacity can opt out of capacity market with exit bid above the clearing price
 – Retirement bids submitted at start of auction
 • Accepted retirements excluded from any future capacity auction
 • Retirements may be rejected for reliability reasons, but only if the reliability problem cannot be resolved during the planning period with alternative actions, such as transmission upgrades or new capacity
 – Import/Export bids submitted at start of auction
 • Accepted imports/exports must respect import/export limits
 • Exports in constrained zones limited to quantity that cannot be supplied by unconstrained zones
 • Import/exports must be backed up by contract
Market power solution

- Price typically is set by new capacity, since new capacity does not have sunk costs
- Sometimes price is set by outside opportunities
 - Retirement (but once and for all)
 - Imports/Exports (but limited to import/export limit)
- Price is never set by existing capacity other than retirements and imports/exports
- Demand curve needed to determine price in event of surplus of existing capacity without retirements or imports/exports

Monopsony market power

- Any capacity built by load through RFP or other process must be offered at cost in the first year it participates in the capacity market
- Capacity built by load in an RFP at a capacity cost of $8/kWm, net of inframarginal rents, must bid in the capacity market at $8/kWm for one year

Protections if auction fails:
 Inadequate supply
 - At the starting price, a zone has insufficient supply to satisfy its local sourcing requirement
 - New capacity in zone is paid starting price
 - Existing capacity in zone is paid $1.1×EBCC
 - Auction is conducted for zones with adequate supply
 - At the starting price, system requirement cannot be satisfied
 - Auction is conducted for export constrained zones
 - In all other zones,
 - New capacity is paid $1.1×EBCC
 - Existing capacity is paid $1.1×EBCC
 - **Note: Rule does not discourage new projects**

Protections if auction fails:
 Insufficient competition
 - Existing capacity, less retirements and net exports, is less than the requirement, and
 - At the starting price, the capacity bid is more than the requirement but less than 4% excess, or a supplier’s new capacity is pivotal
 - Auction is conducted
 - New capacity is paid the clearing price
 - Existing capacity is paid the smaller of the clearing price and $1.1×EBCC
 - Applied for system and in each zone
 - **Note: Rule does not discourage new projects**
Imports and exports

- Imports and exports are treated the same
 - Bids submitted at qualification
 - Bids may be rationed
- Net exports must be consistent with transfer limits
- Exports from constrained zone not allowed if could be done from unconstrained zone
- Imports/exports must be based on contracts

Reconfiguration auction

- Takes place at same time as primary auction
 - Primary: 3 years ahead (40 months ahead)
 - Reconfiguration: 2, 1, 0 years ahead (28, 16, 4 months ahead)
- Reconfiguration includes
 - Adjustment of ICR for current forecast
 - Supplier’s buy/sell to balance position (including demand response)
 - Possible carve out for demand response or other resources that might be unable to offer 3 years ahead

Reconfiguration auction

- Sealed-bid uniform price double-auction
- Same demand curve as in primary auction, netting out capacity already purchased
- No bid mitigation other than floor of zero and cap at deficiency charge

Monthly spot exchange

- Monthly simultaneous clearing
 - Sealed-bid uniform price double auction
 - Suppliers buy/sell to balance positions
 - Demand curve same as in primary auction

Positive ideas (All right, all fit together)

- High spot energy prices send efficient signals
- Long-term contracts fight market power
- Options reduce risk
- ICAP solves the reliability problem
- Demand elasticity is wonderful

Exaggerations & ideas attacking good ideas

1. ICAP is anti-market (energy only)
2. Selling options restores the missing money
- Requiring long-term contracts is too centralized
- High prices mean too much risk / market power
- Options are too complex
- ‘It’s all too complex!’ Wait for demand elasticity
Fallacy #1: Energy-only avoids administrative intervention

The principal reason for an energy-only market would be prices determined without either administrative price caps or other interventions. – MISO, 2005

- Only in markets with responsive demand
- Current markets cannot price reliability

Someday, when the market works

High (scarcity) Prices
$80,000/MWh x 50,000 MW
= $4 billion / year

Reality: No market scarcity revenue here

Market-driven scarcity (elasticity) revenues

To test if market works with energy-only:

- Calculate expected rents from high spot prices
- when installed capacity is adequate

Show:
market elasticity revenues > missing money
(~ $ 4 billion)
What about a market for reliability? (instead of Energy-Only)

- It would black out low-value demanders first
- Right now we can’t do this
- Later, with fancy circuit breakers, we could

How are we doing?

1. Standard energy-only ➔ very administrative
2. Elastic energy-only ➔ not here yet
3. Energy-only + reliability market ➔ not here

- Three strikes:
 - If Energy-Only is best, then it must be
 - E-Only is Good Administrative
 - ICAP is Bad Administrative

Compare Energy-Only vs. All Good Ideas

- **Energy-Only**
 - Perfect performance incentives
 - “Easy” transition to non-administrative (for regulator)
 - Unclear (right on average) investment signals
 - Poor consumer protection from $10,000 prices

- **ICAP + Same High Energy Prices + Options**
 - Perfect performance incentives
 - “Easy” transition to non-administrative (for players)
 - Clear investment signals
 - Good consumer protection

Is Energy-Only really so messy?

- Electricity’s getting expensive again
 - Energy-Only volatility
 - Energy-Only risk premiums
 - Energy-Only market power

- Better to use all good ideas not Energy-Only
Fallacy #2
Call option restores missing money

California Average Energy Price in 2000

Cost of call option at $250 strike

Spot Energy Price ($/MWh)

Call option doesn’t restore missing money

- Competitive price just reflects cost
- Lower strike price increases cost
- Greater scarcity increases risk and cost
- Missing money only comes from higher prices

Summary of Convergence

- Full strength scarcity pricing
- Mandatory load hedges with options
- Reliability controlled by ICAP market
- Long-term contracts
- Increased demand elasticity

Virtuous Dynamics

Introduced with ICAP:

- Mandatory hedges → Price cap raised → Energy price increases → Missing money restored

Over time:

- Elasticity increases → Un-hedged scarcity revenue up → ICAP payments down

“We’re at the home of Jim and Mindy Marks, who are about to discover that their utility bill has gone sky-high. Let’s watch.”