Three Theorems About Package Bidding

Based largely on
“Ascending Auctions with Package Bidding”
Larry Ausubel and Paul Milgrom
June 2002

Outline

- Introduction: Complements and the need for package bidding.
- Understanding the laboratory successes of complex auction designs:
 - Theorem 1: proxy auction outcomes are in the (NTU) core with respect to reported preferences.
- Equilibrium in the TU proxy auction.
 - Theorem 2: Equilibrium in semi-sincere strategies (like in matching theory).
- Reasons to reject the Vickrey auction.
 - Theorem 3: “Good performance” of the Vickrey auction (various criteria) is guaranteed if and only if goods are substitutes.
Complements and the Need for Package Bidding

Exposure Problem in the Netherlands

- Variant of SAA completed February 18, 1998 after 137 rounds.
- Raised NLG 1.84 billion.
- Prices per band in millions of NLG
 - Lot A: 8.0
 - Lot B: 7.3
 - Lots 1-16: 2.9-3.6
Prices: Substitutes & Complements

- **Theorem**: If all items are **mutual substitutes** then (despite indivisibilities), a competitive equilibrium exists.

- **Theorem (Milgrom, Gul-Stacchetti)**. If the set of possible valuations strictly includes the ones for which items are substitutes, then it includes a profile for which no CE exists.

<table>
<thead>
<tr>
<th></th>
<th>Item A</th>
<th>Item B</th>
<th>Package AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bidder 1</td>
<td>a</td>
<td>b</td>
<td>a+b+c</td>
</tr>
<tr>
<td>Bidder 2</td>
<td>a+αc</td>
<td>b+αc</td>
<td>a+b</td>
</tr>
</tbody>
</table>

- Market clearing prices do not exist if .5<α<1.

Understanding the lab successes of complex auction designs
FCC-Cybernomics Experiment

<table>
<thead>
<tr>
<th>Complementarity Condition:</th>
<th>None</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAA (No packages)</td>
<td>97%</td>
<td>90%</td>
<td>82%</td>
<td>79%</td>
</tr>
<tr>
<td>SAAPB (“OR” bids)</td>
<td>99%</td>
<td>96%</td>
<td>98%</td>
<td>96%</td>
</tr>
<tr>
<td>Revenues</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAA (No packages)</td>
<td>4631</td>
<td>8538</td>
<td>5333</td>
<td>5687</td>
</tr>
<tr>
<td>SAAPB (“OR” bids)</td>
<td>4205</td>
<td>8059</td>
<td>4603</td>
<td>4874</td>
</tr>
<tr>
<td>Rounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAA (No packages)</td>
<td>8.3</td>
<td>10</td>
<td>10.5</td>
<td>9.5</td>
</tr>
<tr>
<td>SAAPB (“OR” bids)</td>
<td>25.9</td>
<td>28</td>
<td>32.5</td>
<td>31.8</td>
</tr>
</tbody>
</table>

Scheduling Trains in Sweden

- Paul Brewer and Charles Plott
- Lab environment
 - Additive values for trains
 - Single N-S track
 - Complex “no crashing” constraint
- Ascending offer process
- Efficient outcomes
The General Proxy Model

- Each bidder i has
 - a finite set of feasible offers X_i and
 - a strict ordering over them represented by u_i.
- Auctioneer has
 - a feasible set $X = X_1 \times \ldots \times X_L$.
 - a strict ordering over X represented by u_0.
- Proxy auction rules
 - Auction proceeds in a sequence of rounds
 - Provisional winning bidders make no new bid
 - Others add “most preferred” remaining bid, unless “no trade” is preferred to that bid.
 - Auctioneer takes at most one bid per bidder to maximize u_0.

Proxy Auction Analysis

- Generalized Proxy Auction
 - By round t, proxy has proposed null bid and all packages for bidder satisfying a minimum profit constraint: $u_i(x_i) \geq \pi_i^t$
- At round t, the auctioneer tentatively accepts the feasible bid profile that maximizes $u_0(x^t)$.
 - Therefore, utility vector π^t is unblocked by any coalition S.
- Bidders not selected reduce their target utilities to include one new offer, but do not reduce below “zero” (the value of no trade).
 - Therefore, when the auction ends, the utility allocation is feasible.
Theorem 1. The generalized proxy auction terminates at a (non-transferable-utility) core allocation relative to reported preferences.

Proof. The payoff vector is unblocked at every round, and the allocation is feasible when the auction ends. QED

The Quasi-linear (TU) Case

Seller's revenue at round t is given by:

\[
\pi_t^f = \max_{x \in X} \sum_{i=0} B_i^f(x_i) \\
= \max_{x \in X} \sum_{i=0} \max(0, v_i(x_i) - \pi_i^f) \\
= \max_{x \in X} \left[\max_{S \subseteq L} \sum_{i \in S \cup \emptyset} v_i(x_i) - \pi_i^f \right] \\
= \max_{S \subseteq L} \left[\max_{x \in X} \sum_{i \in S \cup \emptyset} v_i(x_i) - \pi_i^f \right] \\
= \max_{S \subseteq L} \left[w(S) - \sum_{i \in S \cup \emptyset} \pi_i^f \right] \\
\therefore (\forall S) w(S) \leq \sum_{i \in S} \pi_i^f
\]

Payoffs are unblocked at every round

“Coalitional second price auction”
Applications (w/o Proxies!?!)

- **Train Schedules (Brewer-Plott)**
 - Bidders report additive values for each train
 - Auctioneer maximizes total bid at a round, respecting scheduling constraints (to avoid crashes).

- **FCC package auctions**
 - Bidders report valuations of packages
 - Final outcome is a “core allocation” (for the reported preferences).

- **Package Auctions with Budget Constraints**
 - Bidders report valuations and a budget limit.
 - Final outcome is a “core allocation.”

A Novel “Matching” Procedure

- Uniquely among deferred acceptance algorithms:
 - Offers are multidimensional and/or package offers
 - Feasible sets may be arbitrarily complex
 - The algorithm is *not* monotonic over “held offers”: it may backtrack to take previously rejected offers
 - The analysis does *not* employ a “substitutes” condition.
 - The outcome may *not* be a bidder-Pareto-optimal point in the core.

- Unique in matching theory analysis
 - Equilibrium will be characterized with complex offers.
Equilibrium in a TU Proxy Auction

Formulation

- Assume that all payoffs are quasi-linear
 - For bidders: value received less money paid.
 - For seller: value of allocation plus money received.
- Consider limiting process as the size of the bid increments goes to zero.
 - Focus shifts to transferable utility core.
 - Call this the “TU-proxy auction.”
The Substitutes Case

- Theorem. In the TU-proxy auction, suppose that the set of possible bidder values \(V \) includes all the purely additive values. Then these three statements are equivalent:
 - The set \(V \) includes only values for which goods are substitutes.
 - For every profile of bidder valuations drawn from \(V \), sincere bidding is an \textit{ex post} Nash equilibrium of the proxy auction.
 - For every profile of bidder valuations drawn from \(V \), sincere bidding results in the Vickrey allocation and payments for all bidders.

“Semi-Sincere” Bidding

- Definitions. A strategy in a direct revelation trading mechanism is “semi-sincere” if it can be obtained from sincere reporting by changing the utility of the “no trade” outcome.

- Theorem. In the TU-proxy auction, fix any pure strategy profile of other bidders and let \(\pi_l \) be bidder \(l \)’s maximum profit. Then, bidder \(l \) has a semi-sincere best reply, which is report to its proxy that its values are given by \(v_l(x) - \pi_l \).
 - An anti-collusion property.
Selected Equilibria

- **Selection criterion**
 - All bidders play semi-sincere strategies
 - Losers play sincere strategies

- **Theorem 2**. Let π be a bidder-Pareto-optimal point in $\text{Core}(L,w)$ with respect to actual preferences. Then in the TU-proxy auction, semi-sincere strategies with values reduced by π constitute a (full-information) Nash equilibrium. Moreover, for any equilibrium satisfying the selection criterion, the payoff vector has bidder profits in $\text{Core}(L,w)$.

Vickrey auctions for complements?
Vickrey Auction Rules

- Bids and allocations
 - One or more goods of one or more kinds
 - Each bidder i makes bids $b_i(x)$ on all bundles
 - Auctioneer chooses the feasible allocation $x^* \in X$ that maximizes the total bid accepted

- Vickrey (“pivot”) payments for each bidder i are:
 $$p_i = \max_{x \in X} \sum_{j \neq i} b_j(x_j) - \sum_{j \neq i} b_j(x_j^*)$$

- Vickrey auction advantages are well known, but there are also important disadvantages.

Direct vs. Indirect Mechanisms

- The Vickrey auction is a direct mechanism, requiring the bidder to evaluate 2^N packages to make its bids.

- Indirect mechanisms may be favored (CRA Report to FCC: Milgrom, et al) to economize on valuation efforts.
Theorem 3. Suppose that the set of possible bidder values V includes all the purely additive values. Then these six statements are all equivalent:

- The set V includes only values for which goods are substitutes.
- For every profile of bidder valuations drawn from V, Vickrey auction revenue is isotone in the set of bidders.
- For every profile... V, Vickrey payoffs are in the core.
- For every profile... V, there is no profitable shill (“false name”) bidding strategy in the Vickrey auction.
- For every profile... V, there is no profitable joint deviation by losing bidders in the Vickrey auction.

Monotonicity and Revenue Problems

- Vickrey Auction and the Core
 - Two identical spectrum bands for sale
 - Bidders 1 wants the pair only and will pay up to 2 billion.
 - Bidders 2 and 3 want single license and will pay up to $2B$.
 - Outcome:
 - Bidders 2 and 3 acquire the licenses.
 - Price is zero.

- Problems in this example:
 - Adding bidder 3 reduces revenue from $2B$ to zero.
 - The Vickrey outcome lies outside the core.

- Conclusions change if 1 will pay up to $1B$ each.
 - Substitutes condition is the key.
The Shills Problem

- Example: two identical spectrum bands for sale
 - Bidder 1 wants only the pair, will pay up to $2B.
 - Bidder 2 is willing to pay $0.5B each, $1B for the pair
 - By bidding $2B for each license using two names, bidder 2 can win both licenses at a price of zero.

- The Vickrey auction is vulnerable to shill bidders.

- Conclusion changes if 1 will pay up to $1B each.
 - Substitutes condition is the key.

Loser Collusion

- Example: two identical spectrum bands for sale
 - Bidder 1 wants only the pair, will pay up to $2B.
 - Bidder 2 is willing to pay $0.5B for one
 - Bidder 3 is willing to pay $0.5B for one
 - Losing bidders 2 and 3 have a profitable joint deviation, bidding $2B each, winning both licenses at a price of zero.

- The Vickrey auction is unique in its vulnerability to collusion even among losing bidders

- Conclusion changes if 1 will pay up to $1B each.
 - Substitutes condition is the key.
Vickrey’s “Efficiency Problem”

- Example: 2 licenses, East and West
 - Bidder 1 has value $1.2B for the pair
 - Bidder 2 has value of $1B for East
 - Bidder 3 has value $1B for West
 - Merged bidders 2 & 3 have value $2.5 for E-W package

- Vickrey price and profit effects of a merger
 - Unmerged firms total price is $400 million, profit of $1.6B.
 - Merged firm’s price is $1.2 billion, profit $1.3B

- Incentive is not to merge; value is not maximized.
 - Result reverses if 1’s value is $0.6B per license.

Comparing Auctions

- + means “has the property generally”
- * means “has the property when goods are substitutes”

<table>
<thead>
<tr>
<th>Property</th>
<th>Vickrey Auction</th>
<th>Proxy Auction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sincere bidding is a Nash equilibrium.</td>
<td>+</td>
<td>*</td>
</tr>
<tr>
<td>Equilibrium outcomes are in the core.</td>
<td>*</td>
<td>+</td>
</tr>
<tr>
<td>No profitable shill bids</td>
<td>*</td>
<td>+</td>
</tr>
<tr>
<td>No profitable joint deviations for losers</td>
<td>*</td>
<td>+</td>
</tr>
<tr>
<td>Competing technologies property</td>
<td>No</td>
<td>+</td>
</tr>
<tr>
<td>Fully adaptable to limited budgets</td>
<td>No</td>
<td>+</td>
</tr>
</tbody>
</table>
The End