Extreme Values of Multivariate Functions

Professor Peter Cramton
Economics 300
Extreme values of multivariate functions

• In economics many problems reflect a need to choose among multiple alternatives
 – Consumers decide on consumption bundles
 – Producers choose a set of inputs
 – Policy-makers may choose several instruments to motivate behavior

• We now generalize the univariate techniques
Stationary points and tangent planes of bivariate functions

\[g(x_1, x_2) = 6x_1 - x_1^2 + 16x_2 - 4x_2^2 \]

\[h(x_1, x_2) = x_1^2 + 4x_2^2 - 2x_1 - 16x_2 + x_1x_2 \]
Slices of a bivariate function

\[g = 6x_1 - x_1^2 + 16x_2 - 4x_2^2 \]

\[g_1 = 6 - 2x_1 = 0 \]

\[g_2 = 16 - 8x_2 = 0 \]
Multivariate first-order condition

- If $f(x_1, x_2, ..., x_n)$ is differentiable with respect to each of its arguments and reaches a maximum or a minimum at the stationary point, $(x_1^*, ..., x_n^*)$, then each of the partial derivatives evaluated at that point equals zero, i.e.

$$f_1(x_1^*, ..., x_n^*) = 0$$

$$...$$

$$...$$

$$...$$

$$f_n(x_1^*, ..., x_n^*) = 0$$
Second-order condition in the bivariate case $f(x_1, x_2)$

First total differential

$$y = f(x_1, x_2)$$

$$dy = f_1(x_1, x_2)dx_1 + f_2(x_1, x_2)dx_2$$

i.e.

$$dy = f_1dx_1 + f_2dx_2$$
Second-order condition in the bivariate case \(f(x_1, x_2) \)

Second total differential

\[
d^2 y = \frac{\partial [dy]}{\partial x_1} dx_1 + \frac{\partial [dy]}{\partial x_2} dx_2
\]

\[
= \frac{\partial [f_1 dx_1 + f_2 dx_2]}{\partial x_1} dx_1 + \frac{\partial [f_1 dx_1 + f_2 dx_2]}{\partial x_2} dx_2
\]

\[
= f_{11} \cdot (dx_1)^2 + 2 f_{12} \cdot (dx_1 \cdot dx_2) + f_{22} \cdot (dx_2)^2
\]
Extreme values and multivariate functions

Sufficient condition for a local maximum (minimum)

- If the second total derivative evaluated at a stationary point of a function $f(x_1,x_2)$ is negative (positive) for any dx_1 and dx_2, then that stationary point represents a local maximum (minimum) of the function.
Extreme values and multivariate functions

Sufficient Condition for a Local Minimum:

\[d^2 y > 0 \text{ if } f_{11} > 0 \text{ and } f_{22} - \frac{(f_{12})^2}{f_{11}} > 0 \]

Sufficient Condition for a Local Minimum:

\[d^2 y > 0 \text{ if } f_{11} > 0 \text{ and } f_{11}f_{22} > f_{12}^2 \]
Extreme values and multivariate functions

Sufficient Condition for a Local Maximum:

\[d^2y < 0 \text{ if } f_{11} < 0 \text{ and } f_{22} - \frac{(f_{12})^2}{f_{11}} < 0 \]

Sufficient Condition for a Local Maximum:

\[d^2y < 0 \text{ if } f_{11} < 0 \text{ and } f_{11}f_{22} > f_{12}^2 \]
Extreme values of multivariate functions – bivariate case

- Choose \((x_1,x_2)\) to maximize (or to minimize) \(f(x_1,x_2)\)
First Order Conditions:

\[f_1(x_1, x_2) = 0 \quad \text{and} \quad f_2(x_1, x_2) = 0 \]

stationary points

\((x_1^*, x_2^*) \)
Second Order Conditions

Local Minimum if
\[f_{11}(x_1^*, x_2^*) > 0 \]

and
\[f_{11}(x_1^*, x_2^*) f_{22}(x_1^*, x_2^*) > \left(f_{12}(x_1^*, x_2^*) \right)^2 \]

Local Maximum if
\[f_{11}(x_1^*, x_2^*) < 0 \]

and
\[f_{11}(x_1^*, x_2^*) f_{22}(x_1^*, x_2^*) > \left(f_{12}(x_1^*, x_2^*) \right)^2 \]
Exercises

• Choose \((x_1,x_2)\) to minimize

\[f(x_1, x_2) = 4x_1 + 2x_2^2 + x_1^2 + x_2 \]
\[f(x_1, x_2) = 4x_1 + 2x_2^2 + x_1^2 + x_2 \]

FOC:

\[f_1 = 4 + 2x_1 = 0 \quad \Rightarrow \quad x_1^* = -2 \]

\[f_2 = 4x_2 + 1 = 0 \quad \Rightarrow \quad x_2^* = \frac{-1}{4} \]
\[f_1 = 4 + 2x_1 \]
\[f_2 = 4x_2 + 1 \]

SOC: We need to find \(f_{11}, f_{12}, f_{22} \)

If \(f_{11} > 0 \) and \(f_{11} \cdot f_{22} > (f_{12})^2 \), then local min
\[f_1 = 4 + 2x_1 \]
\[f_2 = 4x_2 + 1 \]

SOC:

\[f_{11} = 2 \]
\[f_{12} = 0 \]
\[f_{22} = 4 \]

Observe that \(f_{11} \)

\[f_{11} \cdot f_{22} = 2(4) = 8 > 0 = (f_{12})^2 \]

Hence, \((−2, \frac{-1}{4})\) is local minimum.
Exercise 2

• Find the local max and local min of

\[f(x_1, x_2) = 8x_1 - 7x_2^2 - x_1^2 + 14x_2 \]
$f(x_1, x_2) = 8x_1 - 7x_2^2 - x_1^2 + 14x_2$

$FOC:\n\begin{align*}
f_1 &= 8 - 2x_1 = 0 \rightarrow x_1^* = 4 \\
f_2 &= -14x_2 + 14 = 0 \rightarrow x_2^* = 1
\end{align*}$
\(f_1 = 8 - 2x_1 \)
\(f_2 = -14x_2 + 14 \)

SOC:
\(f_{11} = -2 \)
\(f_{12} = 0 \)
\(f_{22} = -14 \)

Observe that \(f_{11} = -2 < 0 \) and
\[f_{11} \cdot f_{22} = (-2)(-14) = 28 > 0 = (f_{12})^2 \]
Hence, \((4,1)\) is local max.
Exercise 3

• Find the local max and local min of

\[f(x_1, x_2) = -2x_1 + 4x_2^2 + x_1^2 - 16x_2 + x_1x_2 \]
\[f(x_1, x_2) = -2x_1 + 4x_2^2 + x_1^2 - 16x_2 + x_1x_2 \]

FOC:

\[f_1 = -2 + 2x_1 + x_2 = 0 \]

\[f_2 = 8x_2 - 16 + x_1 = 0 \]
\[f_1 = -2 + 2x_1 + x_2 = 0 \]
\[f_2 = 8x_2 - 16 + x_1 = 0 \]

\[-2 + 2x_1 + x_2 = 0 \rightarrow x_2 = 2 - 2x_1\]

\[8(2 - 2x_1) - 16 + x_1 = 0 \rightarrow x_1^* = 0\]

\[x_2^* = 2\]
$f_1 = -2 + 2x_1 + x_2$

$f_2 = 8x_2 - 16 + x_1$

$SOC:$

$f_{11} = 2$

$f_{12} = 1$

$f_{22} = 8$

Observe that $f_{11} = 2 > 0$ and

$f_{11} \cdot f_{22} = (2)(8) = 16 > 1 = (f_{12})^2$

Hence, $(0, 2)$ is local min.
Exercise 4

• Find the local max and local min of

\[f(x_1, x_2) = -x_1 - \frac{1}{8} x_2^2 - \frac{1}{2} x_1^2 + x_2 + x_1 x_2 \]
\[f(x_1, x_2) = -x_1 - \frac{1}{8} x_2^2 - \frac{1}{2} x_1^2 + x_2 + x_1 x_2 \]

FOC:

\[f_1 = -1 - x_1 + x_2 = 0 \]

\[f_2 = -\frac{1}{4} x_2 + 1 + x_1 = 0 \]
\[f_1 = -1 - x_1 + x_2 = 0 \]
\[f_2 = -\frac{1}{4} x_2 + 1 + x_1 = 0 \]

\[-1 - x_1 + x_2 = 0 \rightarrow x_2 = 1 + x_1 \]

\[-\frac{1}{4} (1 + x_1) + 1 + x_1 = 0 \rightarrow 1 + x_1 - 4 - 4x_1 = 0 \]

\[x_1^* = -1 \]

\[x_2^* = 0 \]
\[f_1 = -1 - x_1 + x_2 \]
\[f_2 = -\frac{1}{4} x_2 + 1 + x \]

SOC:
\[f_{11} = -1 \]
\[f_{12} = 1 \]
\[f_{22} = -\frac{1}{4} \]

Observe that \(f_{11} = -1 < 0 \) and
\[f_{11} \cdot f_{22} = (-1)(-\frac{1}{4}) = \frac{1}{4} < 1 = (f_{12})^2 \]

Hence, no concl.
Exercise 6

- Find the local max and local min of

\[f(x_1, x_2) = -\frac{1}{2} x_2^2 - \frac{1}{3} x_1^3 + x_2 \]
\[
f(x_1, x_2) = -\frac{1}{2} x_2^2 - \frac{1}{3} x_1^3 + x_2
\]

FOC:

\[
f_1 = -x_1^2 = 0 \rightarrow x_1^* = 0
\]

\[
f_2 = -x_2 + 1 = 0 \rightarrow x_2^* = 1
\]
\[f_1 = -x_1^2 \]
\[f_2 = -x_2 + 1 \]

\text{SOC:}
\[f_{11} = -2x_1 \]
\[f_{12} = 0 \]
\[f_{22} = -1 \]
At $(0,1)$

\[\begin{align*}
SOC:\quad & f_{11} = -2x_1 = 0 \\
& f_{12} = 0 \\
& f_{22} = -1
\end{align*} \]

Observe that $f_{11} = 0$ and

\[f_{11} \cdot f_{22} = (0)(-1) = 0 = 0 = (f_{12})^2 \]

Hence, no concl.
Exercise 7

• Find the local max and local min of

\[f(x_1, x_2) = x_1 - \frac{1}{2} x_2^2 - \frac{1}{3} x_1^3 + x_2 \]
\[f(x_1, x_2) = x_1 - \frac{1}{2} x_2^2 - \frac{1}{3} x_1^3 + x_2 \]

FOC:

\[f_1 = 1 - x_1^2 = 0 \quad \Rightarrow \quad x_1^* = -1 \quad \text{or} \quad x_1^* = 1 \]

\[f_2 = -x_2 + 1 = 0 \quad \Rightarrow \quad x_2^* = 1 \]

Two stationary points \((-1,1)\) and \((1,1)\)
\[f_1 = 1 - x_1^2 \]
\[f_2 = -x_2 + 1 \]

SOC:
\[f_{11} = -2x_1 \]
\[f_{12} = 0 \]
\[f_{22} = -1 \]
At \((1,1)\)

SOC:

\[f_{11} = -2x_1 = -2\]
\[f_{12} = 0\]
\[f_{22} = -1\]

Observe that \(f_{11} = -2 < 0\) and
\[f_{11} \cdot f_{22} = (-2)(-1) = 2 > 0 = (f_{12})^2\]

Hence, \((1,1)\) is local max.
At \((-1, 1)\)

SOC:

\[f_{11} = -2x_1 = -2(-1) = 2 \]
\[f_{12} = 0 \]
\[f_{22} = -1 \]

Observe that \(f_{11} = 2 > 0\) and
\[f_{11} \cdot f_{22} = (2)(-1) = -2 < 0 = (f_{12})^2 \]

Hence, at \((-1, 1)\) no concl.